
Pt104 Manual v1.0
1.Introduction

2.Connecting to PC

3.Specifications

4.Principles of Operation

5. Technical information

Safety Warning

The ground of the pt104 is connected directly to the ground of your computer, in order to minimise
electrical interference.

Take care when using bare-wire platinum resistance thermometers that they do not come into contact with
voltages outside the operating range of the pt104, as you may risk damage to the pt104 and your
computer.

When measuring temperatures on mains equipment, we recommend the use of insulated thermometer
probes. If a sensor input is accidentally connected to mains, your computer chassis may become live.

Introduction

The pt104 is a four channel, high resolution temperature converter for use with Pt100 and Pt1000 type
sensors. It can also be used to measure resistance and voltage.

In Pt100/Pt1000/resistance mode, the unit uses a four-wire circuit and applies a continuous sense current
of 250uA. For Pt100 and 0..500 ohms, the signal passes through an amplifier with a gain of 21: for
Pt1000 and 0..10k, it feeds directly into the ADC. The sense current passes through the input resistor and
through and internal, 3ppm reference. The value of this resistor is stored in EEPROM inside the unit.
Yearly calibration is recommended.

In voltage mode, the input connector can be treated as a differential input with ground, or two single
ended inputs. Both inputs must be zero volts or above, though it does not matter which input has the
higher voltage. The accuracy on the 2.5V range depends on the accuracy of the internal voltage
reference. For the 113mV range, it also depends on the accuracy of the x21 amplifier. This may vary by
2%, and has a tempco of 100ppm/degC.

Principles of operation

Platinum resistance thermometers (PRTs) offer excellent accuracy over a wide temperature range (from -200
to 850 C). Sensors are interchangeable between different manufacturers, and are available in various accuracy
ratings in packages to suit most applications. Unlike thermocouples, it is not necessary to use special cables to
connect to the sensor.

The principle of operation is to measure the resistance of a platinum element. The most common type (PT100)
has a resistance of 100 ohms at 0 C and 138.4 ohms at 100 C. There are also PT1000 sensors that have a
resistance of 25 ohms and 1000 ohms respectively at 0 C.

The relationship between temperature and resistance is approximately linear over a small temperature range: for
example, if you assume that it is linear over the 0 to 100 C range, the error at 50C is 0.4 C. For precision
measurement, it is necessary to linearise the resistance to give an accurate temperature. The most recent
definition of the relationship between resistance and temperature is International Temperature Standard 90 (ITS-
90). This linearisation is done automatically, in software, when using Pico signal conditioners.

The linearisation equation is

Rt = R0 * (1 + A* t + B*t2 +C*(t-100)* t3)

A = 3.9083 E-3

B = -5.775 E-7

C = (below 0 C) -4.183 E -12

(Above 0 C) zero

For a Pt100 sensor, a 1 C temperature change will cause a 0.384ohm change in resistance, so even a small
error in measurement of the resistance (for example, the resistance of the wires leading to the sensor) can
cause a large error in the measurement of the temperature. For precision work, sensors have four wires - two to
carry the sense current, and two to measure the voltage across the sensor element. It is also possible to obtain
three-wire sensors, although these operate on the (not necessarily valid) assumption that the resistance of each
of the three wires is the same.

The current through the sensor will cause some heating: for example, a sense current of 1mA through a 100
ohm resistor will generate 100uW of heat. If the sensor element is unable to dissipate this heat, it will report an
artificially high temperature. This effect can be reduced by either using a large sensor element, or by making
sure that it is in good thermal contact with its environment.

Using a 1mA sense current will give a signal of only 100mV. Because the change in resistance for a degree
celsius is very small, even a small error in the measurement of the voltage across the sensor will produce a
large error in the temperature measurement. For example, a 100uV voltage measurement error will give a 0.4 C
error in the temperature reading. Similarly, a 1uA error in the sense current will give 0.4 C temperature error.

Because of the low signal levels, it is important to keep any cables away from electric cables, motors, switch
gear and other devices that may emit electrical noise. Using screened cable, with the screen grounded at one
end, may help to reduce interference. When using long cables, it is necessary to check that the measuring
equipment is capable of handling the resistance of the cables. Most equipment can cope with up to 100 ohms
per core.

The type of probe and cable should be chosen carefully to suit the application. The main issues are the
temperature range and exposure to fluids (corrosive or conductive) or metals. Clearly, normal solder junctions on
cables should not be used at temperatures above about 170 C.

Sensor manufacturers offer a wide range of sensors that comply with BS1904 class B (DIN 43760): these
sensors offer an accuracy of ±0.3 C at 0 C. For increased accuracy, BS1904 class A (±0.15 C) or tenth-DIN
sensors (±0.03 C). Companies like Isotech can provide standards with 0.001 C accuracy. Please note that these
accuracy specifications relate to the SENSOR ONLY: it is necessary to add on any error in the measuring
system as well.

Related standards are IEC751 and JISC1604-1989. IEC751 also definesthe colour coding for PRT sensor
cables: the one or two wires atttached to one end of the sensor are red, and the one or two wires at the other end
are white.

Specification

Temperature Resistance Voltage

Sensor PT100*, PT1000

Range -200..800C 0..375 ohms*

0..10k ohms

0..115mV

0..2.5V*

Linearity 10ppm 10ppm 10ppm

Accuracy @25C 0.01C* 20ppm* 0.2%

Temperature coefficient 3ppm/degC 3ppm/degC 100ppm/degC

RMS Noise

(using filter)

0.01C 10ppm 10ppm

Resolution 0.001C 1uohm 0.156uV

Number of inputs 4

Connectors 4-pin miniDIN

Input impedence >>1MOhm

Overvoltage protection +/-100V

Output RS232, D9 female

Environmental 20-30C for stated accuracy

0-70C overall

20-90% RH

Software PicoLog data logging software

Drivers for Windows 3.1/95/98/NT/2000/ME/Linux

Examples for C, Delphi, Excel, Labview, Labwindows, HP-VEE

 Quoted accuracy is for options marked *

Connecting the pt104

To use the pt104, you should connect the D-connector on the pt104 to the serial port on your computer using the
cable provided. If you have a 25-way serial port, use the 9 to 25 way adaptor supplied.

Next, connect a Pt100 or Pt1000 PRT to one or more of the input connectors.

Pin Connections to the pt104 Mini-Din socket

Pin Pt100, Pt1000

4 Wire

Pt100, Pt1000

3 Wire

Pt100, Pt1000

2 Wire

Differential voltage

1 White Connect to pin 3 Connect to pin 3 Do not connect

2 Red Red Red V -

3 White White White V +

4 Red Red Connect to pin 2 Gnd

 Single ended voltage connection

Connector Channel Pin

1 1 3

5 2

2 2 3

6 2

3 3 3

7 2

4 4 3

8 2

 NOTE: Differential Mode.

The maximum input voltage range of the PT104 is 2.5V. Any voltage in excess of +/-30V on any input pin may
cause permanent damage to the unit.

 In Differential Voltage Mode, the input connector should be treated as a differential input with reference to
ground. Both inputs (V+ and V-) must be zero volts or above (it does not matter which input has the higher
voltage) and must remain within the input range. A ground reference connection is also required for correct
operation.

The Ground connection of each MiniDIN socket consists of a 100 Ohm resistor to mains earth/ground via the
serial cable outer braiding and the PC chassis.

To check that the unit is working:

• start up PicoLog

• select the File menu

• select New Settings

• In the recording window, press OK

• In the sampling window, press OK

• In the converters window, Select pt104

• Select the port that the pt104 is connected to

• Press OK

• Select channel 1

• Type in a channel name

• Select the data type required i.e temperature, resistance or voltage

• Select circuit - for PT100 and PT1000

• Press OK

Readings from the pt104 should appear in the monitor window.

Note: on standard IBM compatible computers, only two interrupts are assigned for serial ports. If you wish to
use more than two pt104 units, each pt104 must have its own interrupt, so you will need a serial port
card which can be set to non-standard interrupt settings.

For more information on serial port see serial port settings.

To connect to a modem see modem operation

Overview

The pt104 is supplied with driver routines that you can build into your own programs.

Once you have installed the software, the DRIVERS directory contains the drivers and a selection of examples of
how to use the drivers. It also contains a copy of this manual as a pdf file. If you installed under Windows, the
Pico Technology group contains a help file for the drivers. See the Readme.doc file in the DRIVERS directory for
the filenames.

The driver routine is supplied as object files for DOS and protected mode, and as a Dynamic Link Library for
Windows.

The object files use Pascal linkage conventions and do not require any compiler run-time routines: they can
therefore be used with most real-mode and some protected-mode C and Pascal compilers.

The Windows DLL can be used with C, Delphi and Visual Basic programs: it can also be used with programs
like Microsoft Excel, where the macro language is a form of Visual Basic. More than one application can access
the Windows DLL at the same time, as long as the applications do not change the settings for channels that they
are not using.

Operating Systems

DOS

Windows 3.x

Windows 95/98/ME

Windows NT/2000

Linux

The following table specifies the function of each of the routines in the driver:

Routine Function

pt104_open_unit Open the driver to use a specified serial port(s)

pt104_close_unit Close the port (ALWAYS DO THIS!)

pt104_poll_driver Poll the driver (not usually necessary)

pt104_get_cycle Find out when the driver has taken a new set of readings

pt104_set_channel Specify the sensor type and filtering for a channel

pt104_set_mains Specify the mains setting 50 or 60 Hz

pt104_get_value Get the most recent data reading from a channel

pt104_get_version Get the version number of this pt104

pt104_get_unit_info Get the version number, calibration number, calibration date and
batch number of this pt104

pt104_get_driver_version Get the version number of the driver

pt104_labview Easy to use interface for Labview

The normal calling sequence for these routines is as follows:

Open driver

Set Channels

While you want to read data,

 Get data

End While

Close Unit

Close Driver

pt104_open_unit

DOS version:

unsigned short pt104_open_unit (

unsigned short port,

unsigned short base,

unsigned short irq);

Windows version:

unsigned short pt104_open_unit (

unsigned short port);

This routine specifies the serial port number with an pt104 unit. If you wish to use more than one pt104, you
should call the routine once for each pt104.

The port must be 1 for COM1, 2 for COM2, etc.

Under DOS, this routine has extra parameters to specify the base address an interrupt number for the COM port.
These can be set to zero for the default base address and IRQ. Under Windows, the base address and IRQ
information is defined in your WIN.INI file, so it is not necessary to specify a value.

This routine returns TRUE if the driver successfully opens the pt104

pt104_close_unit

void pt104_close_unit (unsigned short port);

This routine disconnects the driver from the specified serial port.

If you successfully open any serial ports, you MUST call pt104_close_unit for each port before you exit from
your program. If you do not, your computer may misbehave until you next reboot it.

pt104_poll_driver

void pt104_poll_driver (void);

It is not normally necessary to call this routine, as the driver uses the timer to poll the pt104. Some programs,
like Excel, appear block the timer and so it is necessary to poll the driver periodically whilst waiting for data.

pt104_get_cycle

unsigned short pt104_get_cycle

(unsigned long far * cycle,

 unsigned short port);

This routine returns the number of complete cycles of readings taken from a particular pt104

When you call pt104_get_value , it returns immediately with the most recent reading for the specified channel.
If you call it repeatedly, it will return the same reading repeatedly, until the driver takes the next reading from that
channel.

If you wish to record values only when the driver has taken a new reading, you can use this routine to find out
how many complete cycles of readings the driver has taken, then you can call pt104_get_value only when a
cycle has completed.

Note: each pt104 is polled independently, so the cycle numbers for multiple pt104s may not keep in step.

pt104_set_channel

void pt104_set_channel (

unsigned short port,

 unsigned short channel,

unsigned short data_type

 unsigned short no_of_wires);

You should call this routine once for each channel that you would like to take readings from. You can do this any
time after calling pt104_open_unit.

The fewer channels are selected, the more frequently these channels will be updated: it takes about 1 second
per active channel.

channel specifies which channel you want to set the details for: it should be between 1 and 4 or between 1 and
8 if using single ended inputs in voltage mode.

data_type set to the type of reading you require (1 for pt100, 2 for pt1000, 3 for resistance 0..500R, 4 for
resistance 0..10k, 5 for differential voltage 0..100mv, 6 for differential voltage 0..2V5, 7 for single ended voltage
0..100mv and 8 for single ended voltage 0..2V5

no_of_wires specifies how many wires the pt100 or pt1000 has (set to 2, 3 or 4)

pt104_set_mains

void pt104_set_mains (

 unsigned short sixty_hertz);

This routine is used to select the mains frequency of 50 or 60Hz.

For fifty hertz set sixty_hertz to zero

For sixty hertz set sixty_hertz to one.

Choosing the incorrect frequency may increase suceptibility to electrical noise.

pt104_get_value

unsigned short pt104_get_value (

long far * data,

unsigned short port,

unsigned short channel,

 unsigned short filtered);

Once you open the driver and define some channels, the driver constantly takes readings from the pt104. When
you call this routine, it immediately sets data to the most recent reading for the specified channel.

Temperatures are returned in thousandths of a degree Celsius, voltages in the 2.5v range are returned in 10’s of
nanovolts (2.5v returned as 250,0000,0000nV), voltages in the 115mV range are returned in nanovolts and
resistances in milliohms.

If a reading is available, it returns TRUE, otherwise it returns FALSE. It will normally return FALSE for a few
seconds after you open the driver, until the driver has taken a reading from the specified channel.

channel should be 1 for channel 1, 2 for channel 2 et cetera.

When measuring single ended voltages:

 connector 1 pin 2 is channel 1

 connector 2 pin 2 is channel 2

 ...

 connector 1 pin 3 is channel 5

 connector 2 pin 3 is channel 6

If you set filtered to TRUE, the driver returns a median filtered value of the data. Otherwise a non-filtered
value is returned.

pt104_get_version

unsigned short pt104_get_version (

unsigned short far * version,

unsigned short port);

This routine sets version to version number of the specified pt104

The upper byte of the version is always 104 for a pt104: the lower byte is the two hex digits of the version and
release. It provides a useful check that the link to the pt104 is working correctly.

pt104_get_unit_info

short pt104_get_unit_info (char * str,unsigned short line, unsigned short port)

Call this routine to obtain information on the unit. Str is set to the infomation specified by line.

 0 = Version number

1 = Calibration number

2 = Calibraton date

3 = Batch number

pt104_get_driver_version

short pt104_get_driver_version (void)

This routine returns the version number of the current driver

pt104_labview

short pt104_labview (

float * result,

unsigned short port,

unsigned short channel,

unsigned short data_type,

unsigned short filtered

 unsigned short no_of_wires)

Easy to use interface for Labview.

DOS Driver

The DOS driver is supplied in two object files, pt104drv.obj and commdrv.obj . It can be used in both C and
Pascal programs.

Windows 3.x Driver

The windows 16-bit driver is the file pt10416.dll: it is installed in the drivers\win directory.

If an application is unable to find the DLL, try moving the DLL to windows\system

The 16-bit driver is intended for use with all applications running under Windows 3.11 and for 16-bit
applications running under windows 95.

Windows 95/98/ME

Windows 95, 98 and ME can run both 16-bit and 32-bit applications. For 16-bit applications, see Windows 3.1.

The windows 32-bit driver is the file pt10432.DLL : it is installed in the drivers\win32 directory. If an
application is unable to find the DLL, try moving the DLL to \windows\system .

Windows NT and 2000

Most applications running under Windows NT and 2000 are 32-bit applications. Windows NT and 2000 use the
same 32- bit driver as Windows 95. 32-bit driver is the file pt10432.DLL : it is installed in the
drivers\win32 directory. If an application is unable to find the DLL, try moving the DLL to
\windows\system .

Linux
At time of release Linux is not supported, please check website

C

DOS

To link the driver into you program, you should take the following steps:

add #define DOS at the top of your program

 #include the header file pt104.h into your program

 If you are using an IDE, include the file pt104drv.obj and commdrv.obj in you project.

 If you are using a command-line compiler, include the file pt104drv.obj and commdrv.obj in your
linkfile.

Pascal

The pt104 is not supported unded Pascal

BASIC
The pt104 is not supported under DOS basic.

C/C++

C (16 Bit Windows applications)

You should find the following files in the C:\pico\drivers\win C: being the drive where your software is installed.

pt104tes.c - Demonstration file.

pt10416.dll - Windows 16-bit driver.

pt104.h - header file

Producing a library file(.lib)

For Borland and Watcom C, Microsoft Visual C version 1.5 or lower, use the implib program that comes
supplied with these compilers.

The command is:

Implib pt10416.lib pt10416.dll

This command is typed in at the command prompt - make sure you are in the correct directory or the
pt10416.dll file will not be found. This will create a file called pt10416.lib

The following steps are then required to use the drivers in your program

Include the pt10416.lib in your program

Include the file pt104.h in the source file(s) of your program.

The pt104tes.c file can be used to demonstrate using the pt104 driver program within a Windows
application. You will also need to include the resource file pt104tes.rc

C (32 bit Windows applications)

You should find the following files in the C:\pico\drivers\win C: being the drive where your software is installed.

pt104tes.c - Demonstration file.

pt10432.dll - Windows 16-bit driver.

pt104.h - header file

Producing a library file(.lib)

For Borland and Watcom C, Microsoft Visual C version 1.5 or lower, use the implib program that comes
supplied with these compilers.

The command is:

Implib pt10432.lib pt10432.dll

This command is typed in at the command prompt - make sure you are in the correct directory or the
pt10432.dll file will not be found. This will create a file called pt10432.lib

The following steps are then required to use the drivers in your program

Include the pt10432.lib in your program

Include the file pt104.h in the source file(s) of your program.

The pt104tes.c file can be used to demonstrate using the pt104 driver program within a Windows
application. You will also need to include the resource file pt104tes.rc.

For Microsoft Visual C versions 2, 4 and 5, Microsoft no longer supply implib. Furthermore, the names
used in these versions of C are decorated- there is a prefix which indicates how many bytes are
transferred to the routine as parameters. As a result, the C names do not match the names in the DLL.
The Microsoft tools to alias decorated to undecorated names do not appear to work, so it is therefore
necessary to use ordinal linking- linking by number, rather than name. The file pt104ms.lib (supplied with
examples) contains all the neccessary routines. To use this file:

Include the pt104ms.lib in your project

Include the file pt104.h in the C source file(s) of your program.

C++ (32 Bit Windows applications)

C++ programs can access all versions of the driver. If pt104.h is included in a C++ program, the PREF1 macro
expands to extern “C” : this disables name-mangling (or decoration, as Microsoft call it), and enables C++
routines to make calls to the driver routines using C headers.

Delphi

The WIN sub-directory contains a simple program pt104.dpr which opens the drivers and reads temperatures
from two channels. You will need the following files to build a complete program.

• pt104.dpr - Project file

• pt104fm.dfm - Delphi form file

• pt104fm.pas - Delphi pascal unit

• pt104.inc - Procedure prototypes for driver routines.

The file pt104.inc contains procedure prototypes for the driver routines: you can include this file in your
application.

This example has been tested with Delphi version 2.

Excel

The easiest way to get data into Excel is to PicoLog for Windows.

If, however, you need to do something that is not possible using PicoLog, you can write an Excel macro which
calls pt104xx.dll to read in a set of data values. The Excel Macro language is similar to Visual Basic.

Excel 5
The example pt10416.XLS reads in 20 values from the unit on channel 1 at one per second, and assigns them
to cells B4..B24.

Excel 7
The example pt10432.XLS reads in 20 values from the unit on channel 1 at one per second, and assigns them
to cells A4..A24.

Visual Basic

Version 3 (16 bits)

The DRIVERS\WIN16 sub-directory contains a simple Visual Basic program, pt10416.mak .

pt10416.MAK - Visual basic MAK file.

pt10416.FRM - Visual basic form.

Note that it is usually necessary to copy the .DLL file to your \windows\system directory.

Version 4 and 5 (32 bits)

The DRIVERS\WIN32 sub-directory contains the following files:

pt10432.VBP - Visual basic project file.

pt10432.BAS - Contains procedure prototypes for driver routines.

pt10432.FRM - Visual basic form.

Labview

The routines described here were tested using Labview under Windows 98 version 4.0.

It is possible to access all of the driver routines described earlier, it is easier to use the special Labview access
routine. The pt104.llb library in the DRIVERS\WIN32 sub-directory shows how to access this routine.

To use this routine, copy pt104.llb and pt10432.dll to your labview user.lib directory.

You will then use the pt104 sub-vi, and an example sub-vi which demonstrates how to use them. You can use
one of these sub-vis for each of the channels that you wish to measure. The sub-vi accepts the port (1 for
COM1), the channel (1 to 4) the PRT type (1 for pt100, 2 for pt1000). The sub-vi returns a temperature for the
PRT.

LabWindows
The routine described here was tested using version 5.5 under Windows 98.

The DRIVERS\WIN32 contains the following files

pt104cvi.c - Demo program.

pt10432.lib - Library file for driver routines.

pt104ui.h - User interface resource file.

pt104ui.uir - Labwindows user interface resource.

pt104.h - pt104 header file.

pt10432.dll - pt104 32bit driver.

To build the Labwindows example add the files pt104cvi.c pt10432.lib, pt104ui.h and pt104ui.uir into your
project.

The example program shows how to collect 200 readings at one per second and then display them on a
graph.

If your project cannot find pt10432.dll try moving it to windows\system

HP-Vee

The routine described here was tested using HP-Vee version 5 under Windows 98.

The DRIVERS\WIN32 contains the following files:

• pt10432.dll - 32 bit driver file

• pt104.vee - HP-Vee file

• pt104.vh - Procedure prototypes for driver

To use the example, open the file pt104.vee in HP-Vee and edit the import library icon so:

File Name path is set to the location of pt10432.dll

Definition File path is set to the location of pt104.vh

The example program collects 1000 readings from the pt104 and displays them on a x-y trace.

Serial port settings

The following table shows the standard serial port settings for COM ports.

Port Base address Interrupt Standard?

COM1 3F8 4 Yes

COM2 2F8 3 Yes

COM3 3E8 4 de facto

COM4 2E8 3 de facto

COM5... No

Note that, on most computers, it is not possible to use the same interrupt for two serial ports at the
same time. If, for example, you wish to use COM1 and COM3 at the same time, it is necessary to
use a serial port card which can be set to an interrupt other than 4. These can be obtained either
from Pico Technology or your computer supplier.

Connections

The information presented here is necessary only if you wish to connect the pt104 to the PC in
some unusual way (for example, via a radio modem).

The pt104 uses the following RS232 data lines (pin connections as on pt104)

Pin Name Usage

3 TX Data from the PC to the pt104

2 RX Data from the pt104 to the PC

7 RTS Held at a positive voltage (>7V) to power the
pt104

5 GND 0V line

4 DTR Held at a negative voltage (<-7V) to power the
pt104

The driver powers up the pt104 by enabling RTS and disabling DTR to provide the correct
polarity power supply. If these are set incorrectly no damage will occur to either PC or pt104.

When the pt104 is first powered up, it sends a version response (see below)

Protocol

Requests

The computer can send the following request to the pt104

Command Data bytes Function

0x00 - Get Version

0x02 one byte, bit 0 is lsb

bit 0: enable channel 1

bit 1: enable channel 2

bit 2: enable channel 3

bit 3: enable channel 4

bit 4: channel 1 gain

bit 5: channel 2 gain

bit 6: channel 3 gain

bit 7: channel 4 gain

Start Converting

enable:

 0 - off

 1 - on

gain:

 0 - x1

 1 - x21

0x03 bit 4: 0 = 50Hz

 1 = 60Hz

Select 50/60 Hz mains

0x01 - read EEPROM

Responses

At start-up, and on receipt of a version request, the pt104 sends a version response.

Byte value

1 0xff

2 0xAA

3 0x55

4 0x68 Product type

5 0x10 Version

On receipt of a start converting request, the pt104 starts sending conversion responses - approx
one every 180 milliseconds. There are four measurement points for each channel: the pt104
automatically cycles through each of the measurements for each of the active channels. Each
response is as follows:

Byte value

1 bits 0-1: measurement no (0..3)

bits 2-3: channel no (0..3)

bits 4-7: always zero

2-5 reading data: byte 2 is msb

0x20000000 = 0

0xE0000000 = max

On receipt of a read EEPROM request, the unit returns 64 bytes of EEPROM data. This data
contains the following:

Byte Size

1 2 Checksum (byte-wise sum of all the bytes from 3..34, + 0xDEAD

3 1 Calibration version (1 = current)

4 1 Spare

5 8 Calibration date (ddmmyy followed by NULL char)

12 6 Batch number

19 4 Calibration for channel 1 (resistance * 1E6)

23 4 Calibration for channel 2

27 4 Calibration for channel 3

31 4 Calibration for channel 4

Examples

GAIN = 21

MAXINPUT = 2500000

FSD = 0x10000000

To obtain a single ended voltage reading 0 - 115mV

0x0A in byte 1 is measurement no 2 on channel 2.

Reading data in bytes 2-5 giving a value of 0x30000000

Then

result = (0x30000000 * MAXINPUT) / (GAIN * FSD)

= 357142.857142857142857142857142857

where 2500000 is the maximum input voltage in microvolts

where GAIN is a fixed gain factor.

0x10000000 is FSD for a 28bit ADC

To convert the result to mV divide by 10000.0

= 35.7142

To obtain a single ended voltage reading 0 - 2.5V

using the same reading.

0x0A in byte 1 is measurement no 2 on channel 2.

Reading data in bytes 2-5 giving a value of 0x30000000

To convert to voltage:

result = (0x30000000 * MAXINPUT) / FSD

where MAXINPUT is the maximum input voltage in microvolts.

To convert result to V divide result by 10000000.0

To obtain a differential reading. 0 - 2.5V

Take two measurements on a channel i.e measurement 3 and 2 on channel 2.

then

((measurement 3 - measurement 2) * MAXINPUT) / FSD

To convert result to V divide answer by 10000000.0

To calculate a resistance

Read the eeprom to obtain the calibration information for the channels

Take measurement 0, 1, 2 and 3 on a channel.

Then

result = (channel calibration * (measurement 3 - measurement 2)) / measurement 1 -
measurement 0

To convert to a resistance divide result by 1000000.0

To calculate a temperature

Carry out resistance measurement

Use a lookup table to convert the resistance to a temperature

For a lookup table click here

Lookup table

Temp Resistance

-50 80.306282

-49 80.703340

-48 81.100257

-47 81.497036

-46 81.893677

-45 82.290179

-44 82.686545

-43 83.082774

-42 83.478868

-41 83.874827

-40 84.270652

-39 84.666343

-38 85.061901

-37 85.457327

-36 85.852622

-35 86.247785

-34 86.642818

-33 87.037721

-32 87.432495

-31 87.827140

-30 88.221657

-29 88.616046

-28 89.010309

-27 89.404445

-26 89.798455

-25 90.192339

-24 90.586099

-23 90.979734

-22 91.373246

-21 91.766634

-20 92.159898

-19 92.553041

-18 92.946061

-17 93.338960

-16 93.731737

-15 94.124394

-14 94.516930

-13 94.909346

-12 95.301643

-11 95.693820

-10 96.085879

-9 96.477819

-8 96.869641

-7 97.261345

-6 97.652931

-5 98.044401

-4 98.435753

-3 98.826989

-2 99.218109

-1 99.609112

0 100.000000

1 100.390772

2 100.781429

3 101.171970

4 101.562396

5 101.952706

6 102.342901

7 102.732980

8 103.122944

9 103.512792

10 103.902525

11 104.292142

12 104.681644

13 105.071030

14 105.460301

15 105.849456

16 106.238496

17 106.627420

18 107.016229

19 107.404922

20 107.793500

21 108.181962

22 108.570309

23 108.958540

24 109.346656

25 109.734656

26 110.122541

27 110.510310

28 110.897964

29 111.285502

30 111.672925

31 112.060232

32 112.447424

33 112.834500

34 113.221461

35 113.608306

36 113.995036

37 114.381650

38 114.768149

39 115.154532

40 115.540800

41 115.926952

42 116.312989

43 116.698910

44 117.084716

45 117.470406

46 117.855981

47 118.241440

48 118.626784

49 119.012012

50 119.397125

51 119.782122

52 120.167004

53 120.551770

54 120.936421

55 121.320956

56 121.705376

57 122.089680

58 122.473869

59 122.857942

60 123.241900

61 123.625742

62 124.009469

63 124.393080

64 124.776576

65 125.159956

66 125.543221

67 125.926370

68 126.309404

69 126.692322

70 127.075125

71 127.457812

72 127.840384

73 128.222840

74 128.605181

75 128.987406

76 129.369516

77 129.751510

78 130.133389

79 130.515152

80 130.896800

81 131.278332

82 131.659749

83 132.041050

84 132.422236

85 132.803306

86 133.184261

87 133.565100

88 133.945824

89 134.326432

90 134.706925

91 135.087302

92 135.467564

93 135.847710

94 136.227741

95 136.607656

96 136.987456

97 137.367140

98 137.746709

99 138.126162

100 138.505500

101 138.884722

102 139.263829

103 139.642820

104 140.021696

105 140.400456

106 140.779101

107 141.157630

108 141.536044

109 141.914342

110 142.292525

111 142.670592

112 143.048544

113 143.426380

114 143.804101

115 144.181706

116 144.559196

117 144.936570

118 145.313829

119 145.690972

120 146.068000

121 146.444912

122 146.821709

123 147.198390

124 147.574956

125 147.951406

126 148.327741

127 148.703960

128 149.080064

129 149.456052

130 149.831925

131 150.207682

132 150.583324

133 150.958850

134 151.334261

135 151.709556

136 152.084736

137 152.459800

138 152.834749

139 153.209582

140 153.584300

141 153.958902

142 154.333389

143 154.707760

144 155.082016

145 155.456156

146 155.830181

147 156.204090

148 156.577884

149 156.951562

150 157.325125

151 157.698572

152 158.071904

153 158.445120

154 158.818221

155 159.191206

156 159.564076

157 159.936830

158 160.309469

159 160.681992

160 161.054400

161 161.426692

162 161.798869

163 162.170930

164 162.542876

165 162.914706

166 163.286421

167 163.658020

168 164.029504

169 164.400872

170 164.772125

171 165.143262

172 165.514284

173 165.885190

174 166.255981

175 166.626656

176 166.997216

177 167.367660

178 167.737989

179 168.108202

180 168.478300

181 168.848282

182 169.218149

183 169.587900

184 169.957536

185 170.327056

186 170.696461

187 171.065750

188 171.434924

189 171.803982

190 172.172925

191 172.541752

192 172.910464

193 173.279060

194 173.647541

195 174.015906

196 174.384156

197 174.752290

198 175.120309

199 175.488212

200 175.856000

Modem operation

The pt104 is normally connected directly to the computer, but it is also possible to access the pt104 via a modem
using the Windows driver.

It is necessary to provide power to the pt104, either by instructing the modem to provide power or by connecting
a power supply directly to the pt104. See serial connections for information.

Technical information

Using USB Ports

Modem operation

Serial Port Settings

(Interrupts etc)

Serial Port Connections

(Pin connections on the serial port)

Protocol

