
1600 W high efficiency PSU Optimized form, fit and function platform for server application EVAL_1K6W_PSU_G7_DD

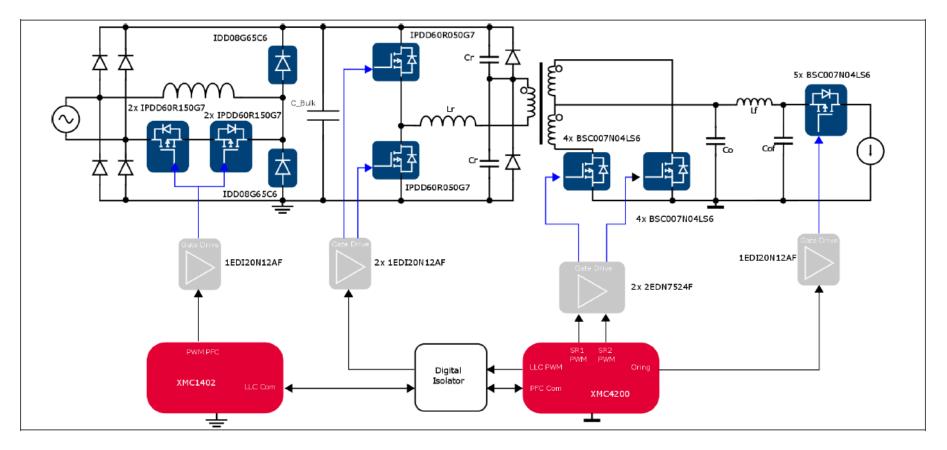
Meneses Herrera David (IFAT PMM ACDC AE) Kutschak Matteo-Alessandro (IFAT PMM ACDC AE) Zechner Florian (IFAT PMM ACDC AE)

Introduction

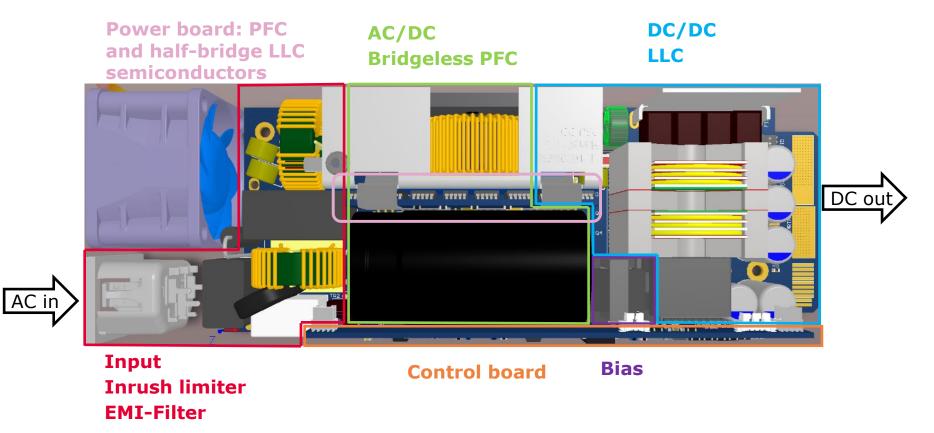
- This Infineon evaluation board (EVAL_1K6W_PSU_G7_DD) represents a complete system solution for a 1600 W server power supply (PSU), which achieves the **80Plus® Titanium® standard**. The power supply is composed of a continuous conduction mode (CCM) bridgeless power factor corrector (PFC) using a bi-directional switch and a half-bridge LLC DC-DC resonant converter.
- > To achieve the high efficiency results the evaluation board features several Infineon key components:
 - → 600 V CoolMOS[™] G7 superjunction MOSFET
 - > CoolSiC[™] Schottky diode 650 V G6
 - > OptiMOS[™] 6 40 V MOSFET
 - > 1EDI20N12AF isolated and 2EDN7524F non-isolated gate drivers (EiceDRIVER™)
 - > XMC1402 and XMC4200 microcontrollers
 - > CoolSET[™] quasi-resonant flyback controller

Summary of features:

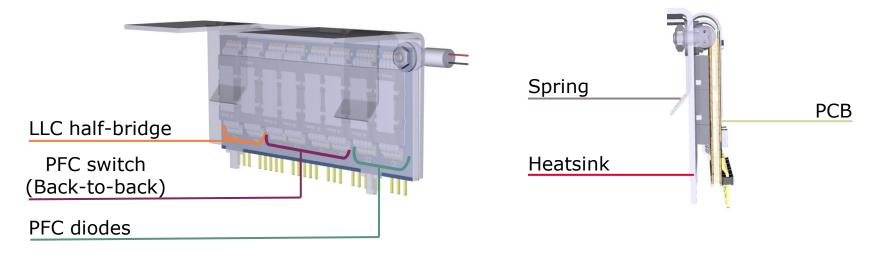
- > Input voltage:
- > Output voltage:
- > Output power:
- > Switching frequency:
- > Peak efficiency:

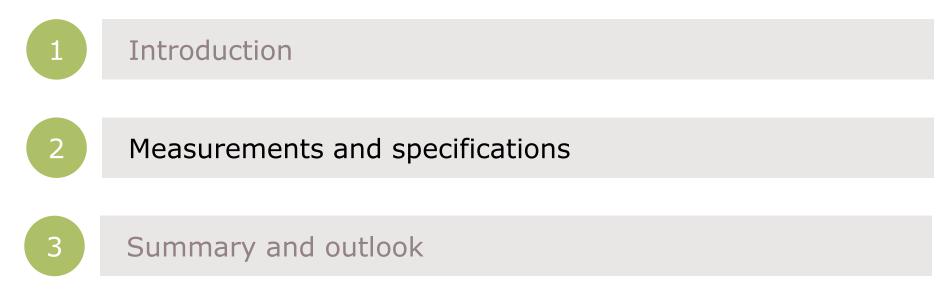

176-265 V_{ac}

- 12.2 V_{dc}
- 1600 W
- PFC 65 kHz LLC 160 kHz (resonant frequency) 96%



Simplified diagram

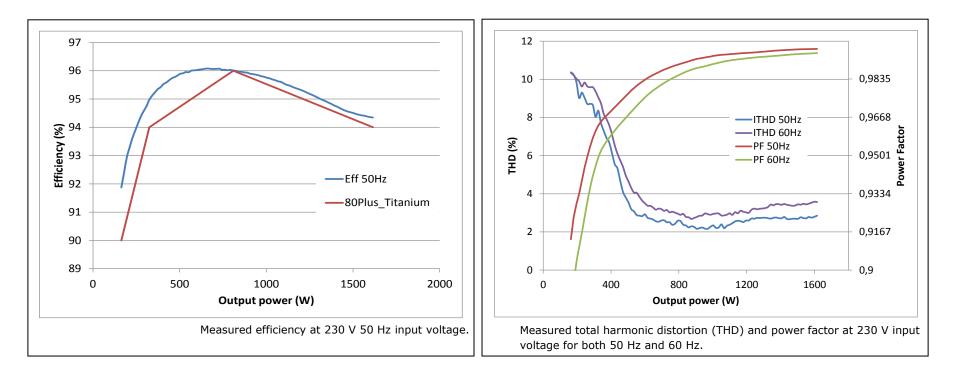

Placement of the different sections in the 1600 W PSU with Infineon's CoolMOS[™] and CoolSiC[™] products in Double DPAK (DDPAK) package


Power module: PFC and half-bridge LLC semiconductors

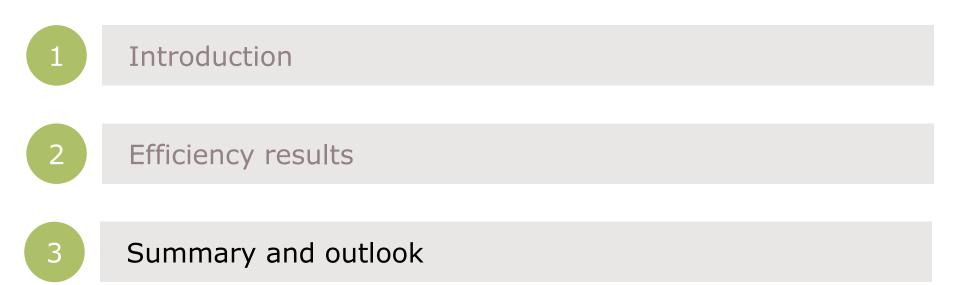
Mounting scheme for the DDPAK Infineon semiconductors in the PFC and halfbridge LLC configuration is shown below:

- The power board integrates eight DDPAK semiconductors CoolMOS[™] G7 switches and CoolSiC[™] G6 Schottky diodes used for the PFC, in combination with the CoolMOS[™] G7 half-bridge switches for the LLC
- > It is designed for mass production as a single module by using a customized copper heatsink with a tinned surface and isolation foil which provides thermal conductivity and electrical isolation
- > The module is soldered vertically into the main PCB of the PSU and positioned in front of the fan to optimize airflow.

Measurements and specifications

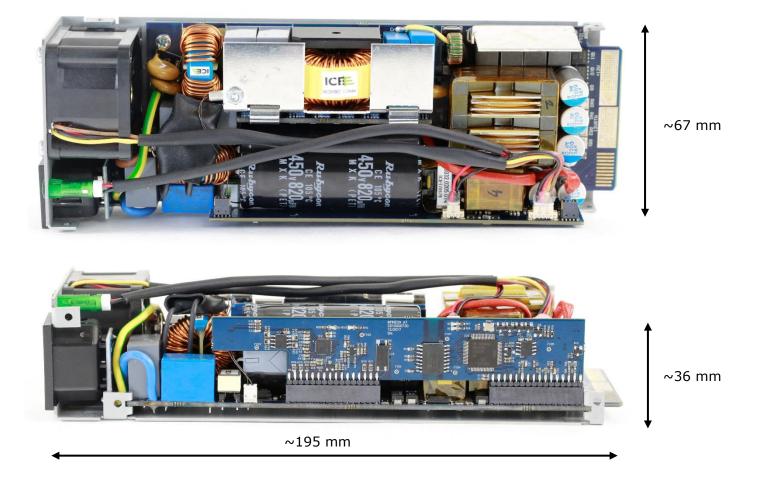

Summary of specifications and test conditions for the 1600 W PSU

Test		Conditions	Specification	
Efficiency test		230Vrms 50Hz/60Hz, 10% to	80Plus [®] Titanium [®] efficiency.	
		100% load	$\eta_{pk} = 96\%$ at 800W (50% load)	
Current THD		230Vrms 50Hz/60Hz, 10% to 100% load	THDi < 10% from 20% load	
Power factor		230Vrms 50Hz/60Hz, 10% to 100% load	PF > 0.95 from 20% load	
Output voltage			12.2V	
Steady state Vout ripple		230Vrms 50/60Hz, 10% to 100% load	∆Vout < 120 mVpk-pk	
Inrush current		230Vrms, 50Hz/60Hz, measured on the first AC cycle	lin_peak < 30A	
Power line disturbance	AC lost (Hold-up time)	230Vrms 50Hz, 10ms at 100% load, 20ms at 50% load		No damage: * PSU soft start if bulk voltage
	Voltage sag	200Vrms 50Hz/60Hz, Different sag conditions; 100% load		under 310V * PSU soft start if Vac out of range for certain time
Brown out			174V ON; 168V OFF	
Load transient		1 A ↔ 66 A, 0.5 A/µs	∆Vout < 240 mVpk	
		66 A ↔ 133 A, 0.5 A/µs		
Over current protection		30 s at 141 A	LLC OFF.	
		10 s at 149 A	Resume of operation requires bulk voltage to drop under 310V	
		1ms at 168 A		
		Output terminals in shortcircuit	Detection within switching cycle. Resume of operation requires bulk voltage to drop under 310V	
EMI		230Vrms 50Hz, full load, resistive load, lab set-up	Complies with Class B limits	



Measurements and specifications

Efficiency results

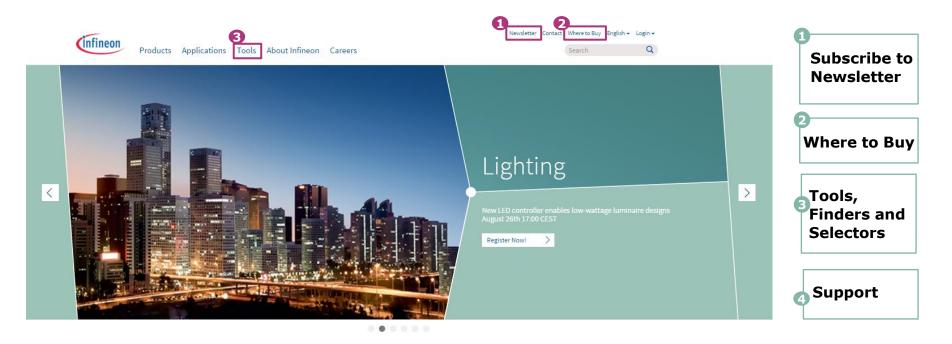

Summary and outlook

- The trend in the field of switched mode power supplies (SMPS) is a move towards power density and optimized cost. To reach the required higher power density levels, heat dissipation must be minimized, making efficiency key parameter in the process
- The 800 W server power supply EVAL 800W PSU 3P P7 and EVAL 800W PSU 4P C7 evaluation boards developed with Infineon semiconductors, are great examples how to achieve high efficiency, similar to the 80Plus[®] Platinum[®] efficiency standards
- Infineon's new EVAL_1K6W_PSU_G7_DD PSU evaluation board keeps the same form factor as the previously described 800W server PSU, while providing twice the power. Therefore, the power density increased to 44 W/in³ in the 1600 W design
- There is always a relationship between form factor and increasing power density.
 Reducing the heat dissipation is a result of higher efficiency
- This server power supply allows the implementation and test of future Infineon devices and technologies. Further modifications of the presented power supply will be possible by updating different Infineon products such as EiceDRIVER[™] 2EDF isolated drivers for the LLC stage, 5th generation CoolSET[™] in the bias supply or CoolMOS[™] as a relay replacement. In the case of OptiMOS[™] 6, those who would like more information are requested to check the Infineon website

Summary and outlook

Dimension

Support



Technical Material	> Application Notes> Datasheets	https://www.infineon.com/eval-1k6w-psu-g7-dd
Evaluation Boards	 > Evaluation Boards > Demoboards > Reference Designs 	> www.infineon.com/evaluationboards
Videos	 > Technical Videos > Product Information Videos 	> www.infineon.com/mediacenter

Support Online tools and services

0	Products	Power	Power Overview
	Applications	Automotive System IC	Power MOSFET
4	Tools	ESD & EMI	IGBT
9	Support	Microcontroller	Smart Low-Side & High-Side Switches
	Technology	RF & Wireless Control	Linear Voltage Regulator
		Security IC	DC-DC Converter
		Sensor	LED Driver Lighting ICs
		Smart Card IC	Silicon Carbide (SiC)
		Interface	High Power Thyristors & Diodes
		Transistor & Diode	Motor Control & Gate Driver
			AC-DC Supply

News & Tweets

Part of your life. Part of tomorrow.

