

Adafruit Feather HUZZAH ESP8266

Created by lady ada

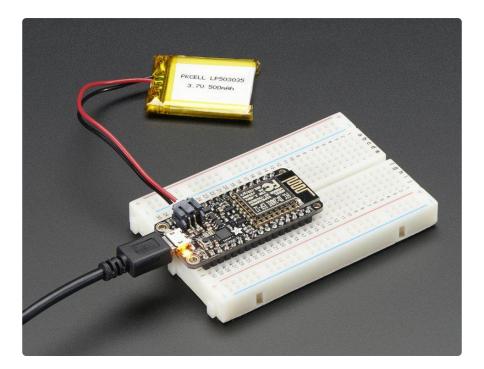
https://learn.adafruit.com/adafruit-feather-huzzah-esp8266

Last updated on 2022-07-27 03:33:49 PM EDT

© Adafruit Industries Page 1 of 65

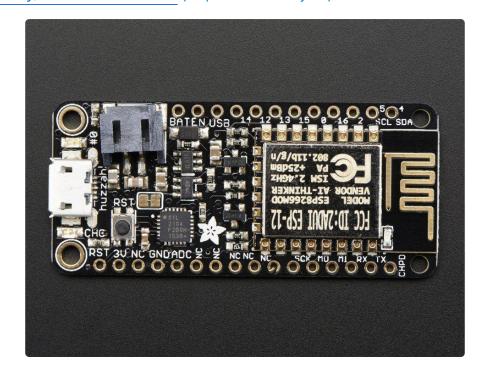
Table of Contents

Overview	5
Pinouts	8
 Power Pins Logic pins Serial pins I2C & SPI pins GPIO pins Analog Pins Other control pins NC Pins 	
Assembly	14
 Header Options! Soldering in Plain Headers Prepare the header strip: Add the breakout board: And Solder! Soldering on Female Header Tape In Place Flip & Tack Solder And Solder! 	
Power Management	23
 Battery + USB Power Power Supplies Measuring Battery ENable pin Alternative Power Options 	
Using NodeMCU Lua	28
 Open up serial console Hello world! Scanning & Connecting to WiFi WebClient example 	
Using Arduino IDE	34
 Install the Arduino IDE 1.6.8 or greater Install the ESP8266 Board Package Setup ESP8266 Support Blink Test Connecting via WiFi 	
WipperSnapper Setup	42
 What is WipperSnapper Sign up for Adafruit.io Add a New Device to Adafruit IO Feedback Troubleshooting "Uninstalling" WipperSnapper 	

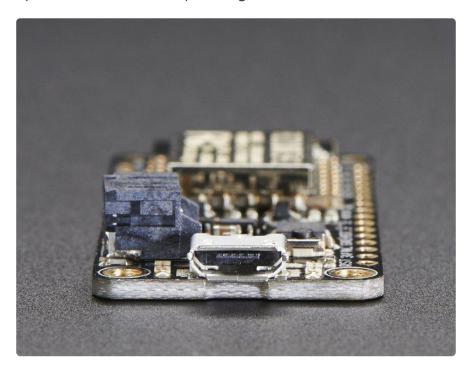

© Adafruit Industries Page 2 of 65

WipperSnapper Usage	47
• Blink a LED	
• Read a Push-Button	
• Read an I2C Sensor	
Going Further	
Using MicroPython	60
Downloads	60
Datasheets & Files	
More info about the ESP8266	
• Schematic	
• Rev G Schematic	
• Fabrication Print	
ESP8266 F.A.Q.	62

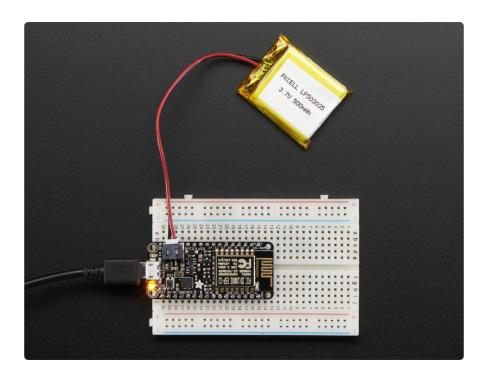
© Adafruit Industries Page 3 of 65


© Adafruit Industries Page 4 of 65

Overview


Feather is the new development board from Adafruit, and like it's namesake it is thin, light, and lets you fly! We designed Feather to be a new standard for portable microcontroller cores.

This is the Adafruit Feather HUZZAH ESP8266 - our take on an 'all-in-one' ESP8266 WiFi development board with built in USB and battery charging. Its an ESP8266 WiFi module with all the extras you need, ready to rock! We have other boards in the Feather family, check'em out here (https://adafru.it/jAQ).

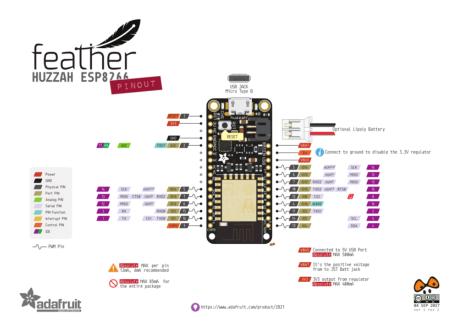

© Adafruit Industries Page 5 of 65

At the Feather HUZZAH's heart is an ESP8266 WiFi microcontroller clocked at 80 MHz and at 3.3V logic. This microcontroller contains a Tensilica chip core as well as a full WiFi stack. You can progam the microcontroller using the Arduino IDE for an easy-to-run Internet of Things core. We wired up a USB-Serial chip that can upload code at a blistering 921600 baud for fast development time. It also has auto-reset so no noodling with pins and reset button pressings.

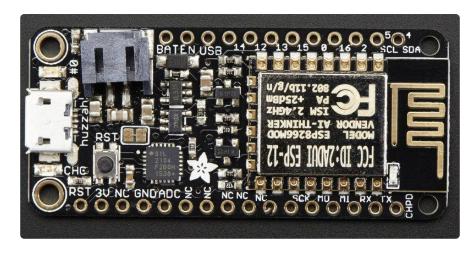
To make it easy to use for portable projects, we added a connector for any of our 3.7V Lithium polymer batteries and built in battery charging. You don't need a battery, it will run just fine straight from the micro USB connector. But, if you do have a battery, you can take it on the go, then plug in the USB to recharge. The Feather will automatically switch over to USB power when its available.

© Adafruit Industries Page 6 of 65

Here's some handy specs!

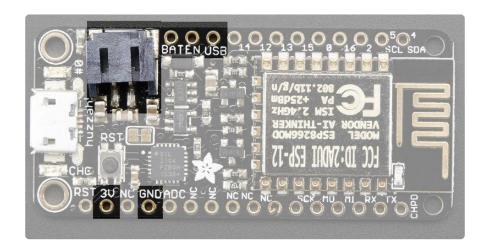

- Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in
- Light as a (large?) feather 6 grams
- ESP8266 @ 80MHz or 160 MHz with 3.3V logic/power
- 4MB of FLASH (32 MBit)
- 3.3V regulator with 500mA peak current output
- CP2104 USB-Serial converter onboard with 921600 max baudrate for uploading
- Auto-reset support for getting into bootload mode before firmware upload
- 9 GPIO pins can also be used as I2C and SPI
- 1 x analog inputs 1.0V max
- Built in 100mA lipoly charger with charging status indicator LED
- Pin #0 red LED for general purpose blinking. Pin #2 blue LED for bootloading debug & general purpose blinking
- Power/enable pin
- 4 mounting holes
- Reset button

© Adafruit Industries Page 7 of 65



Comes fully assembled and tested, with a USB interface that lets you quickly use it with the Arduino IDE or NodeMCU Lua. (It comes preprogrammed with the Lua interpretter) We also toss in some header so you can solder it in and plug into a solderless breadboard. Lipoly battery and USB cable not included (but we do have lots of options in the shop if you'd like!)

Pinouts



© Adafruit Industries Page 8 of 65

Power Pins

- GND this is the common ground for all power and logic
- BAT this is the positive voltage to/from the JST jack for the optional Lipoly battery
- USB this is the positive voltage to/from the micro USB jack if connected
- EN this is the 3.3V regulator's enable pin. It's pulled up, so connect to ground to disable the 3.3V regulator

© Adafruit Industries Page 9 of 65

• 3V - this is the output from the 3.3V regulator, it can supply 500mA peak (try to keep your current draw under 250mA so you have plenty for the ESP8266's power requirements!)

Logic pins

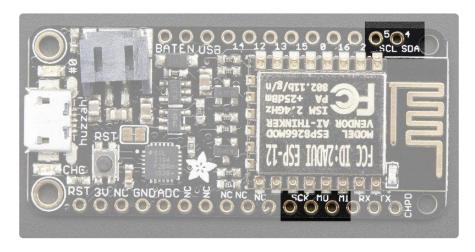
This is the general purpose I/O pin set for the microcontroller. All logic is 3.3V

The ESP8266 runs on 3.3V power and logic, and unless otherwise specified, GPIO pins are not 5V safe! The analog pin is also 1.0V max!

Serial pins

RX and TX are the serial control and bootloading pins, and are how you will spend most of your time communicating with the ESP module

The TX pin is the output from the module and is 3.3V logic.


The RX pin is the input into the module and is 5V compliant (there is a level shifter on this pin)

These are connected through to the CP2104 USB-to-Serial converter so they should n ot be connected to or used unless you're super sure you want to because you will also be getting the USB traffic on these!

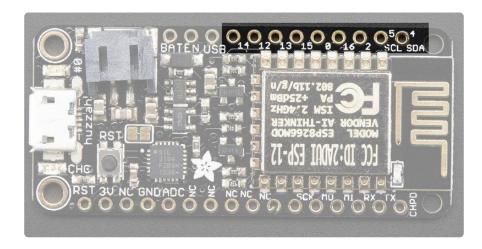
© Adafruit Industries Page 10 of 65

I2C & SPI pins

You can use the ESP8266 to control I2C and SPI devices, sensors, outputs, etc. While this is done by 'bitbanging', it works quite well and the ESP8266 is fast enough to match 'Arduino level' speeds.

In theory you can use any pins for I2C and SPI but to make it easier for people using existing Arduino code, libraries, sketches we set up the following:

- I2C SDA = GPIO #4 (default)
- I2C SCL = GPIO #5 (default)


If you want, you can connect to I2C devices using other 2 pins in the Arduino IDE, by calling **Wire.pins(sda, scl)** before any other Wire code is called (so, do this at the begining of **setup()** for example

Likewise, you can use SPI on any pins but if you end up using 'hardware SPI' you will want to use the following:

- SPI SCK = GPIO #14 (default)
- SPI MOSI = GPIO #13 (default)
- SPI MISO = GPIO #12 (default)

© Adafruit Industries Page 11 of 65

GPIO pins

This breakout has 9 GPIO: #0, #2, #4, #5, #12, #13, #14, #15, #16 arranged at the top edge of the Feather PCB

All GPIO are 3.3V logic level in and out, and are not 5V compatible. Read the <u>full</u> spec sheet (https://adafru.it/f1E) to learn more about the GPIO pin limits, but be aware the maximum current drawn per pin is 12mA.

These pins are general purpose and can be used for any sort of input or output. Most also have the ability to turn on an internal pullup. Many have special functionality:

GPIO #0, which does not have an internal pullup, and is also connected a red LED. This pin is used by the ESP8266 to determine when to boot into the bootloader. If the pin is held low during power-up it will start bootloading! That said, you can always use it as an output, and blink the red LED - note the LED is reverse wired so setting the pin LOW will turn the LED on.

GPIO #2, is also used to detect boot-mode. It also is connected to the blue LED that is near the WiFi antenna. It has a pullup resistor connected to it, and you can use it as any output (like #0) and blink the blue LED.

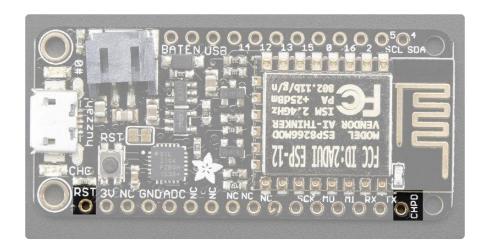
GPIO #15, is also used to detect boot-mode. It has a pulldown resistor connected to it, make sure this pin isn't pulled high on startup. You can always just use it as an output

GPIO #16 can be used to wake up out of deep-sleep mode, you'll need to connect it to the RESET pin

Also note that GPIO #12/13/14 are the same as the SCK/MOSI/MISO 'SPI' pins!

©Adafruit Industries Page 12 of 65

Analog Pins


There is also a single analog input pin called A. This pin has a $^{\sim}1.0V$ maximum voltage, so if you have an analog voltage you want to read that is higher, it will have to be divided down to 0 - 1.0V range

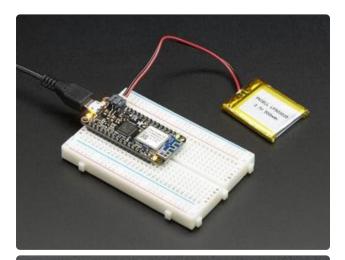
Other control pins

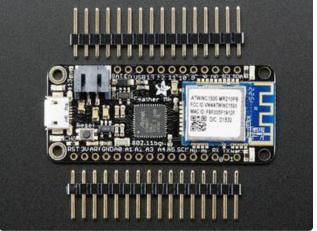
We have a few other pins for controlling the ESP8266

- RST this is the reset pin for the ESP8266, pulled high by default. When pulled down to ground momentarily it will reset the ESP8266 system. This pin is 3.3V logic only
- EN (CH_PD) This is the enable pin for the ESP8266, pulled high by default. When pulled down to ground momentarily it will reset the ESP8266 system. This pin is 3.3V logic only

© Adafruit Industries Page 13 of 65

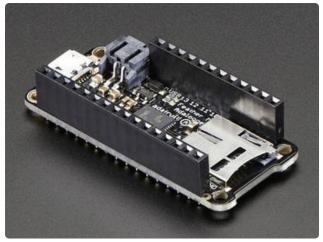
NC Pins


The rest of the pins are labeled NC which means Not Connected - they are not connected to anything and are there as placeholders only, to maintain physical compatibility with the other boards in the Feather line!

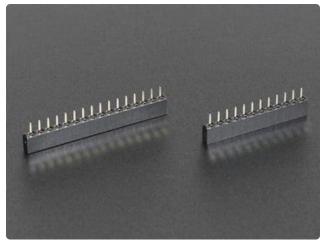

Assembly

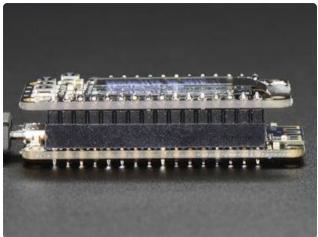
We ship Feathers fully tested but without headers attached - this gives you the most flexibility on choosing how to use and configure your Feather

Header Options!


Before you go gung-ho on soldering, there's a few options to consider!

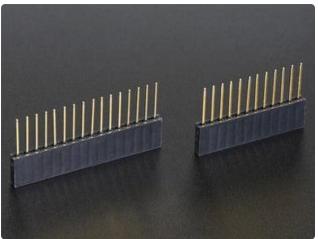
The first option is soldering in plain male headers, this lets you plug in the Feather into a solderless breadboard


© Adafruit Industries Page 14 of 65

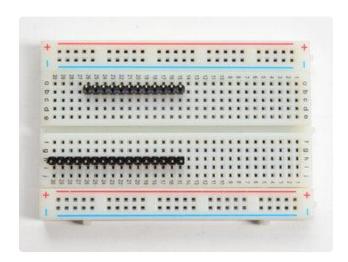


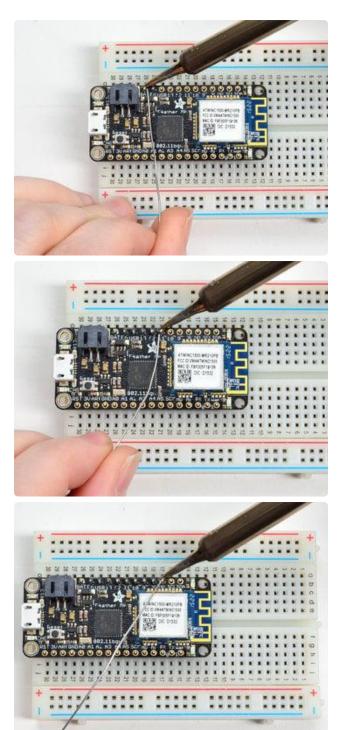
Another option is to go with socket female headers. This won't let you plug the Feather into a breadboard but it will let you attach featherwings very easily


© Adafruit Industries Page 15 of 65



We also have 'slim' versions of the female headers, that are a little shorter and give a more compact shape


© Adafruit Industries Page 16 of 65

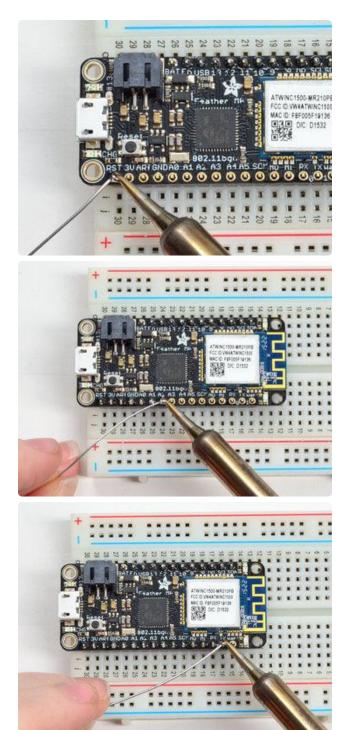

Finally, there's the "Stacking Header" option. This one is sort of the best-of-bothworlds. You get the ability to plug into a solderless breadboard and plug a featherwing on top. But its a little bulky

Soldering in Plain Headers

Prepare the header strip: Cut the strip to length if necessary. It will be easier to solder if you insert it into a breadboard - long pins down

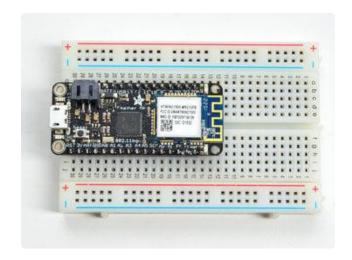
© Adafruit Industries Page 17 of 65

Add the breakout board:


Place the breakout board over the pins so that the short pins poke through the breakout pads

And Solder!

Be sure to solder all pins for reliable electrical contact.

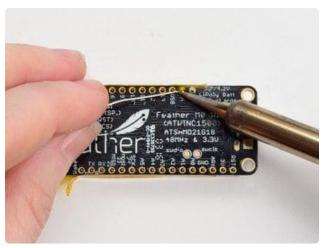

(For tips on soldering, be sure to check out our Guide to Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries Page 18 of 65

Solder the other strip as well.

© Adafruit Industries Page 19 of 65

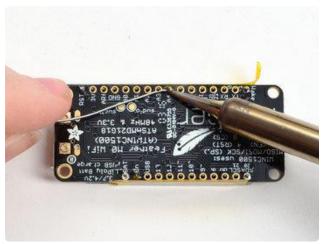
You're done! Check your solder joints visually and continue onto the next steps

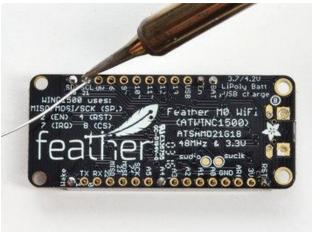

Soldering on Female Header

Tape In Place

For sockets you'll want to tape them in place so when you flip over the board they don't fall out

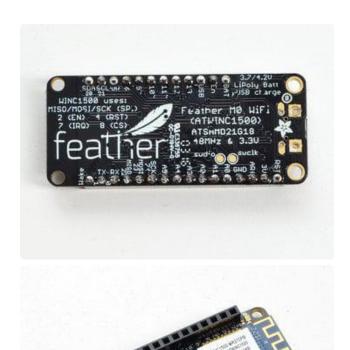
© Adafruit Industries Page 20 of 65




Flip & Tack Solder
After flipping over, solder one or two

points on each strip, to 'tack' the header in place

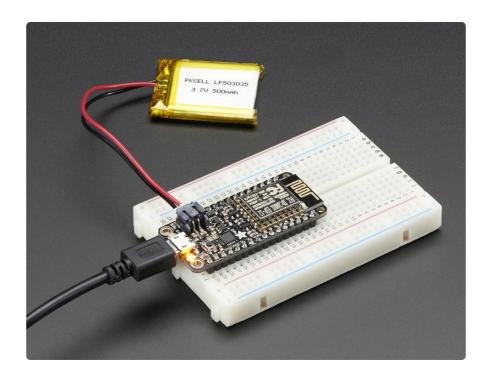
© Adafruit Industries Page 21 of 65



Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries Page 22 of 65



You're done! Check your solder joints visually and continue onto the next steps

Power Management

Don't power the Huzzah ESP8266 with a CanaKit 5V power supply, these power supplies have been destroying the CP2104 chip.

© Adafruit Industries Page 23 of 65

Battery + USB Power

We wanted to make our Feather boards easy to power both when connected to a computer as well as via battery.

There's two ways to power a Feather:

- 1. You can connect with a USB cable (just plug into the jack) and the Feather will regulate the 5V USB down to 3.3V.
- 2. You can also connect a 4.2/3.7V Lithium Polymer (LiPo/LiPoly) or Lithium Ion (Lilon) battery to the JST jack. This will let the Feather run on a rechargeable battery.

When the USB power is powered, it will automatically switch over to USB for power, as well as start charging the battery (if attached). This happens 'hot-swap' style so you can always keep the LiPoly connected as a 'backup' power that will only get used when USB power is lost.

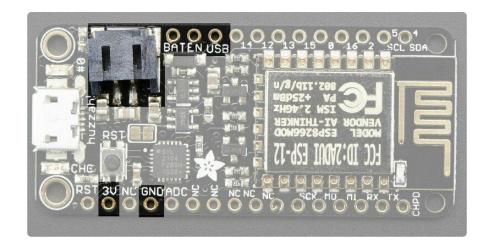
The JST connector polarity is matched to Adafruit LiPoly batteries. Using wrong polarity batteries can destroy your Feather.

© Adafruit Industries Page 24 of 65

The above shows the Micro USB jack (left), LiPoly JST jack (top left), as well as the 3.3V regulator and changeover diode (just to the right of the JST jack) and the LiPoly charging circuitry (right below the regulator).

There's also a CHG LED next to the USB jack, which will light up while the battery is charging. This LED might also flicker if the battery is not connected, it's normal.

The charge LED is automatically driven by the LiPoly charger circuit. It will try to detect a battery and is expecting one to be attached. If there isn't one it may flicker once in a while when you use power because it's trying to charge a (non-existent) battery. It's not harmful, and its totally normal!


Power Supplies

You have a lot of power supply options here! We bring out the BAT pin, which is tied to the LiPoly JST connector, as well as USB which is the +5V from USB if connected. We also have the 3V pin which has the output from the 3.3V regulator. We use a 500mA peak regulator. While you can get 500mA from it, you can't do it continuously from 5V as it will overheat the regulator.

We use this to power the ESP8266 which can draw spikes of 250+mA (although its not continuous).

You should be able to budget about 250mA current available from the regulator, which will leave plenty for the WiFi module.

© Adafruit Industries Page 25 of 65

Measuring Battery

If you're running off of a battery, chances are you wanna know what the voltage is at! That way you can tell when the battery needs recharging. LiPoly batteries are 'maxed out' at 4.2V and stick around 3.7V for much of the battery life, then slowly sink down to 3.2V or so before the protection circuitry cuts it off. By measuring the voltage you can quickly tell when you're heading below 3.7V.

Since the ESP8266 does not have multiple ADC pins, we didn't want to 'sacrifice' one for LiPoly battery monitoring. However we do have a tutorial that mentions how to do it, using two resistors. You can check out the wiring diagram here (use the VBat pin to measure) (https://adafru.it/jCY) and the code here (https://adafru.it/NMb).

ENable pin

If you'd like to turn off the 3.3V regulator, you can do that with the EN(able) pin. Simply tie this pin to Ground and it will disable the 3V regulator. The BAT and USB pins will still be powered.

© Adafruit Industries Page 26 of 65

Alternative Power Options

The two primary ways for powering a feather are a 3.7/4.2V LiPo battery plugged into the JST port or a USB power cable.

If you need other ways to power the Feather, here's what we recommend:

- For permanent installations, a <u>5V 1A USB wall adapter</u> (https://adafru.it/duP) will let you plug in a USB cable for reliable power
- For mobile use, where you don't want a LiPoly, use a USB battery pack! (https://adafru.it/e2q)
- If you have a higher voltage power supply, use a 5V buck converter (https://adafru.it/DHs) and wire it to a USB cable's 5V and GND input (https://adafru.it/DHu)

Here's what you cannot do:

- Do not use alkaline or NiMH batteries and connect to the battery port this will destroy the LiPoly charger and there's no way to disable the charger
- Do not use 7.4V RC batteries on the battery port this will destroy the board

The Feather is not designed for external power supplies - this is a design decision to make the board compact and low cost. It is not recommended, but technically possible:

- Connect an external 3.3V power supply to the 3V and GND pins. Not recommended, this may cause unexpected behavior and the EN pin will no longer. Also this doesn't provide power on BAT or USB and some Feathers/ Wings use those pins for high current usages. You may end up damaging your Feather.
- Connect an external 5V power supply to the USB and GND pins. Not recommended, this may cause unexpected behavior when plugging in the USB port because you will be back-powering the USB port, which could confuse or damage your computer.

© Adafruit Industries Page 27 of 65

Using NodeMCU Lua

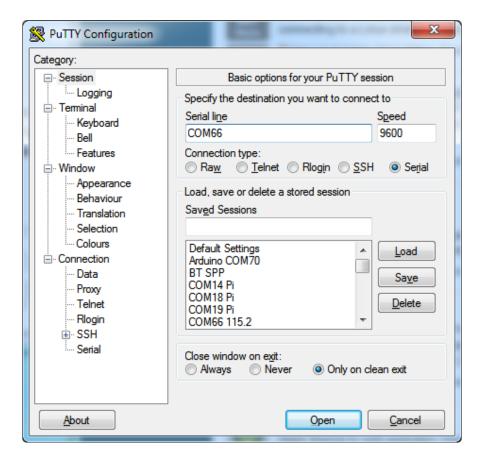
Each Feather HUZZAH ESP8266 breakout comes pre-programmed with NodeMCU's Lua interpreter. As of this writing, we ship with NodeMCU 0.9.5 build 20150318 powered by Lua 5.1.4 but it may be more recent

Lua is still a work in progress, so we strongly recommend visiting NodeMCU and upda ting your Lua version to the very latest as they have the ability to make you the latest continuous build (https://adafru.it/wAq). Then follow their guide on how to update Lua! (https://adafru.it/wAr)

The Lua interpreter runs on the ESP8266 and you can type in commands and read out the results over serial. In order to upload code to the ESP8266 and use the serial console, connect any data-capable micro USB cable to the Feather HUZZAH and the other side to your computer's USB port. Install the required CP2104 USB driver to have the COM/Serial port appear properly (https://adafru.it/jCs)

Don't forget to visit esp8266.com for the latest and greatest in ESP8266 news, software and gossip! (https://adafru.it/f1F)

Don't forget to install the USB driver for the CP2104 USB-to-Serial chip!


Open up serial console

Next up, on your computer, use a serial console program such as CoolTerm (Mac) or P utty (Windows) or screen (linux). Teraterm seems to dislike the initial 74400bps data stream from the ESP8266 so you can try it but you'll possibly need to reset the terminal software.

- Connect up to the COM or Serial port used by your cable, at 9600 Baud
- Make sure you have turned off any hardware handshake or flow control
- Putty isn't good with pasting code in, so you may not be able to copy-n-paste!
- * Also make sure you have line endings set to CRLF "\r\n"

Use any serial console program you like, we just happen to be used to Putty!

© Adafruit Industries Page 28 of 65

Once the terminal software is connected, click the Reset button on the Feather HUZZAH ESP8266 board to reset it and have it print out the welcome message:

If you don't get this message, first check that the red/blue leds flickered when you press the reset button. If they didnt, make sure you've got the right baud rate selected in the software (9600)

© Adafruit Industries Page 29 of 65

Hello world!

Ok we can now turn on an LED. There is a red LED on each board, connected to GPIO #0

NodeMCU Lua's pinouts are not the same as the Arduino/gcc pinouts. We print the Arduino pinouts on the board so watch out!

The Lua documentation for the ESP8266 has GPIO #4 and #5 swapped so if #4/ #5 aren't working for you, try swapping!

Pin Notes	PCB/Arduino	NodeMCU/Lua
No pullups!	0	3
	2	4
CHPD (Note, don't use this pin or set it to be an output!)	3	9
	4	1
	5	2
	9	11
	10	12
	12	6

© Adafruit Industries Page 30 of 65

13	7
14	5
15	8
16	0

So to set the pin #0 LED on and off (which would be pin #3 in Lua) first make it an output:

```
gpio.mode(3, gpio.OUTPUT)
```

Turn the LED on with:

```
gpio.write(3, gpio.LOW)
```

And off with:

```
gpio.write(3, gpio.HIGH)
```

You can make this a little more automated by running a longer script.

For longer text, pasting can be difficult as the lua interpreter needs a little delay time between characters and also require CR-LF settings. For that reason you may want to paste each line and then hit return manually.

```
while 1 do
  gpio.write(3, gpio.HIGH)
  tmr.delay(1000000)   -- wait 1,000,000 us = 1 second
  gpio.write(3, gpio.LOW)
  tmr.delay(1000000)   -- wait 1,000,000 us = 1 second
end
```

The LED will now be blinking on and off.

Note that since its in a loop, its not possible to get it to stop via the interpreter. To stop it, click the Reset button again!

© Adafruit Industries Page 31 of 65

This code halts the processor during the tmr.delay, a smarter way to blink an LED is to use the timer capability to set off the LED control (<u>code from here</u> (https://adafru.it/wGA))

```
-- Pin definition
local pin = 3
local status = gpio.LOW
local duration = 1000 -- 1 second duration for timer

-- Initialising pin
gpio.mode(pin, gpio.OUTPUT)
gpio.write(pin, status)

-- Create an interval
tmr.alarm(0, duration, 1, function ()
    if status == gpio.LOW then
        status = gpio.HIGH
    else
        status = gpio.LOW
    end

gpio.write(pin, status)
end)
```

Scanning & Connecting to WiFi

We'll continue with a quick demo of scanning for WiFi and connecting.

Once you're back at the Lua prompt, set the ESP8266 into WiFi Client mode with

```
wifi.setmode(wifi.STATION)
```

Then you can run the scanner and have it print out the available AP's

```
-- print ap list
function listap(t)
    for k,v in pairs(t) do
        print(k.." : "..v)
        end
end
wifi.sta.getap(listap)
```

or for more detail...

```
-- print ap list
function listap(t)
    for ssid,v in pairs(t) do
        authmode, rssi, bssid, channel = string.match(v, "(%d),(-?%d+),(%x%x:%x%x:%x%x:%x%x:%x%x),(%d+)")
        print(ssid,authmode,rssi,bssid,channel)
    end
end
```

©Adafruit Industries Page 32 of 65

```
wifi.sta.getap(listap)
```

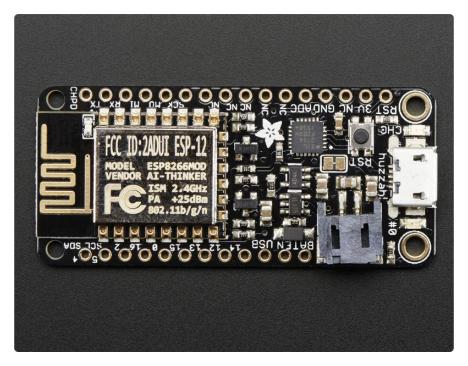
We can connect to the access point with wifi.sta.config and wifi.sta.connect - it will take a second or two to complete the connection, you can query the module to ask the status with wifi.sta.status() - when you get a 5 it means the connection is completed and DHCP successful

```
wifi.sta.config("accesspointname","yourpassword")
wifi.sta.connect()
tmr.delay(1000000) -- wait 1,000,000 us = 1 second
print(wifi.sta.status())
print(wifi.sta.getip())
```

WebClient example

Once you're got the IP address you can connect to adafruit, for example, and read a webpage and print it out:

```
sk=net.createConnection(net.TCP, 0)
sk:on("receive", function(sck, c) print(c) end )
sk:connect(80,"207.58.139.247")
sk:send("GET /testwifi/index.html HTTP/1.1\r\nHost: www.adafruit.com\r\nConnection:
keep-alive\r\nAccept: */*\r\n\r\n")
```


You can also have the module do DNS for you, just give it the hostname instead of IP address:

```
sk=net.createConnection(net.TCP, 0)
sk:on("receive", function(sck, c) print(c) end )
sk:connect(80,"www.adafruit.com")
sk:send("GET /testwifi/index.html HTTP/1.1\r\nHost: www.adafruit.com\r\nConnection:
keep-alive\r\nAccept: */*\r\n\r\n")
```

This is just a light overview of testing out your HUZZAH ESP breakout! For much more, check out NodeMCU's documentation page https://nodemcu.readthedocs.io/ (https://adafru.it/wGB) for the details on what functions are available to you, as well as http://www.lua.org (https://adafru.it/f1N) to learn more about the Lua scripting language

© Adafruit Industries Page 33 of 65

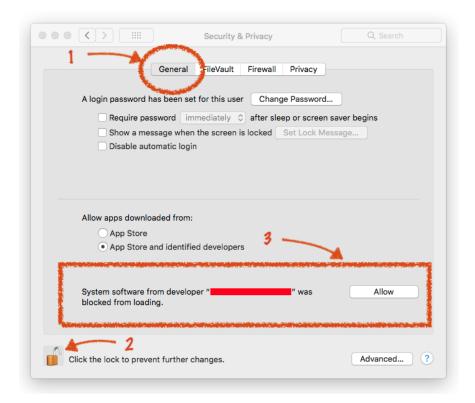
Using Arduino IDE

While the Feather HUZZAH ESP8266 comes pre-programmed with NodeMCU's Lua interpretter, you don't have to use it! Instead, you can use the Arduino IDE which may be more familiar. This will write directly to the firmware, erasing the NodeMCU firmware, so if you want to go back to Lua, use the flasher to re-install it (https://adafru.it/f1O)

Don't forget to visit esp8266.com for the latest and greatest in ESP8266 news, software and gossip! (https://adafru.it/f1F)

In order to upload code to the ESP8266 and use the serial console, connect any datacapable micro USB cable to the Feather HUZZAH and the other side to your computer's USB port.

Don't forget you will also need to install the SiLabs CP2104 Driver:


Click here to download the CP2104
USB Driver

https://adafru.it/vrf

On Mac OS 10.13 and higher, in addition to installing, you will have to give the CP2104 kernel driver permission to load. You can find out if you need to give additional permission by visiting your Security & Privacy settings system preferences screen

© Adafruit Industries Page 34 of 65

after installing and looking for the message that says, 'System software from developer "SiLabs" was blocked from loading', like in the picture below.

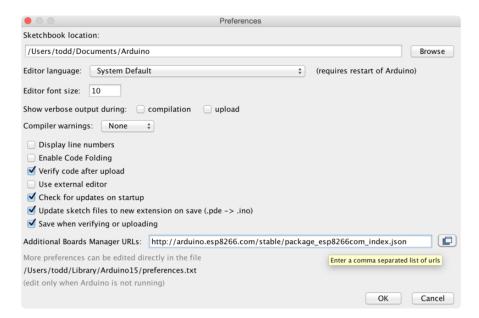
To allow the driver to load, click the lock icon, enter your password, and click "Allow" next to the warning message. After that, you may have to restart your computer before following the steps below and connecting to your Huzzah in the Arduino app.

If you are using Mac OS 10.12.6 (Sierra) and you cannot upload with the latest Mac OS VCP driver, please try the legacy v4 driver below. Note you will need to uninstall the v5 driver using uninstall.sh (in the driver package)

Download the CP2104 Legacy USB Driver

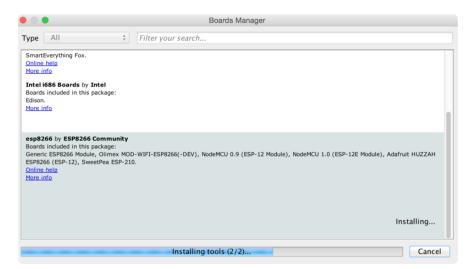
https://adafru.it/ymF

Install the Arduino IDE 1.6.8 or greater


<u>Download Arduino IDE from Arduino.cc (1.6.8 or greater)</u> (https://adafru.it/f1P) from Arduino.cc

The latest is usually the best

© Adafruit Industries Page 35 of 65


Install the ESP8266 Board Package

Enter http://arduino.esp8266.com/stable/package_esp8266com_index.json into Additional Board Manager URLs field in the Arduino v1.6.4+ preferences.

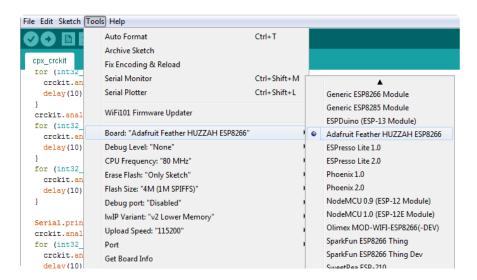
Visit our guide for how to add new boards to the Arduino 1.6.4+ IDE for more info about adding third party boards (https://adafru.it/f7X).

Next, use the Board manager to install the ESP8266 package.

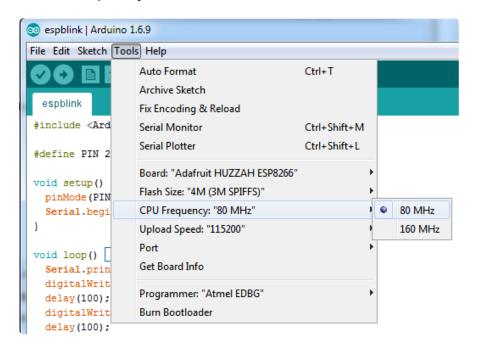
If you want to use this board with Adafruit IO Arduino - make sure you're on version 2.5.1 or ABOVE.

After the install process, you should see that esp8266 package is marked INSTALLED. Close the Boards Manager window once the install process has completed.

© Adafruit Industries Page 36 of 65

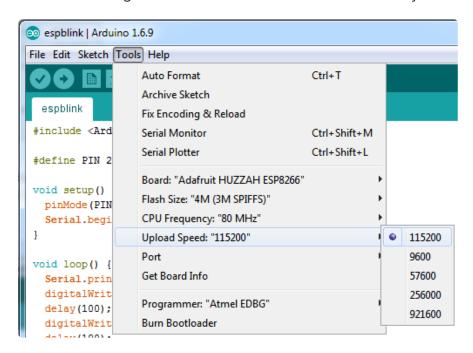

Boards included in this package:
Generic ESP8266 Module, Olimex MOD-WIFI-ESP8266(-DEV), NodeMCU 0.9 (ESP-12 Module), NodeMCU 1.0 (ESP-12E Module), Adafruit HUZZAH ESP8266 (ESP-12), ESPresso Lite 1.0, ESPresso Lite 2.0, Phoenix 1.0, Phoenix 2.0, SparkFun Thing, SweetPea ESP-210, WeMos D1, WeMos D1 mini, ESPino (ESP-12 Module), ESPino (WROOM-02 Module), WifInfo, ESPDuino.

Online help

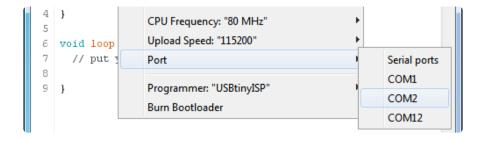

More info

Setup ESP8266 Support

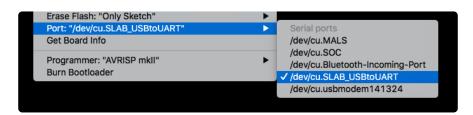
When you've restarted, select Adafruit Feather HUZZAH ESP8266 from the Tools->Board dropdown



80 MHz as the CPU frequency



You can keep the Flash Sizeat "4M (3M SPIFFS)


©Adafruit Industries Page 37 of 65 For Upload Speed, select 115200 baud (You can also try faster baud rates, we were able to upload at a blistering 921600 baud but sometimes it fails & you have to retry)

The matching COM port for your FTDI or USB-Serial cable

On a mac, you should look for the "SLAB_USBtoUART" port

Blink Test

We'll begin with the simple blink test


Enter this into the sketch window (and save since you'll have to)

```
void setup() {
  pinMode(0, OUTPUT);
```

©Adafruit Industries Page 38 of 65

```
void loop() {
  digitalWrite(0, HIGH);
  delay(500);
  digitalWrite(0, LOW);
  delay(500);
}
```

Now you can simply upload! The Feather HUZZAH has built in auto-reset that puts it into bootloading mode automagically

The sketch will start immediately - you'll see the LED blinking. Hooray!

Connecting via WiFi

OK once you've got the LED blinking, lets go straight to the fun part, connecting to a webserver. Create a new sketch with this code:

```
/*
  * Simple HTTP get webclient test
  */

#include <ESP8266WiFi.h&gt;

const char* ssid = "yourssid";
const char* password = "yourpassword";

const char* host = "wifitest.adafruit.com";

void setup() {
  Serial.begin(115200);
  delay(100);
```

© Adafruit Industries Page 39 of 65

```
// We start by connecting to a WiFi network
  Serial.println();
  Serial.println();
  Serial.print("Connecting to ");
  Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
   delay(500);
    Serial.print(".");
  Serial.println("");
  Serial.println("WiFi connected");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());
int value = 0;
void loop() {
 delay(5000);
  ++value;
  Serial.print("connecting to ");
  Serial.println(host);
  // Use WiFiClient class to create TCP connections
 WiFiClient client;
  const int httpPort = 80;
  if (!client.connect(host, httpPort)) {
   Serial.println("connection failed");
    return;
  }
  // We now create a URI for the request
  String url = "/testwifi/index.html";
  Serial.print("Requesting URL: ");
  Serial.println(url);
  // This will send the request to the server
  "Connection: close\r\n\r\n");
  delay(500);
  // Read all the lines of the reply from server and print them to Serial
  while(client.available()){
   String line = client.readStringUntil('\r');
    Serial.print(line);
  }
  Serial.println();
  Serial.println("closing connection");
```

Dont forget to update

```
const char* ssid = "yourssid";
const char* password = "yourpassword";
```

© Adafruit Industries Page 40 of 65

to your access point and password, then upload the same way: get into bootload mode, then upload code via IDE

```
© esp_WiFiClient_adafruit | Arduino 1.6.4

File Edit Sketch Tools Help

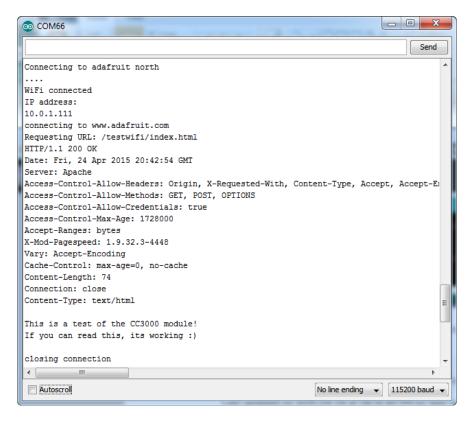
esp_WiFiClient_adafruit

// We start by connecting to a WiFi network

Serial.println();

Serial.println();

Serial.println(sid);


WiFi.begin(ssid, passvord);

while (NiFi.status() != VL_CONNECTED) (
    delay(500);

Serial.println(");

Serial.println(");
```

Open up the IDE serial console at 115200 baud to see the connection and webpage printout!

That's it, pretty easy!

© Adafruit Industries Page 41 of 65

This page was just to get you started and test out your module. For more information, check out the <u>ESP8266 port github repository</u> (https://adafru.it/eSH) for much more up-to-date documentation!

WipperSnapper Setup

The WipperSnapper firmware and ecosystem are in BETA and are actively being developed to add functionality, more boards, more sensors, and fix bugs. We encourage you to try out WipperSnapper with the understanding that it is not final release software and is still in development.

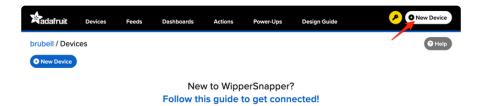
If you encounter any bugs, glitches, or difficulties during the beta period, or with this guide, please contact us via http://io.adafruit.com/support

What is WipperSnapper

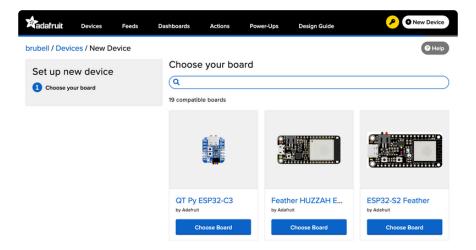
WipperSnapper is a firmware designed to turn any WiFi-capable board into an Internet-of-Things device without programming a single line of code. WipperSnapper connects to <u>Adafruit IO</u> (https://adafru.it/fsU), a web platform designed (<u>by Adafruit!</u> (https://adafru.it/Bo5)) to display, respond, and interact with your project's data.

Simply load the WipperSnapper firmware onto your board, add credentials, and plug it into power. Your board will automatically register itself with your Adafruit IO account.

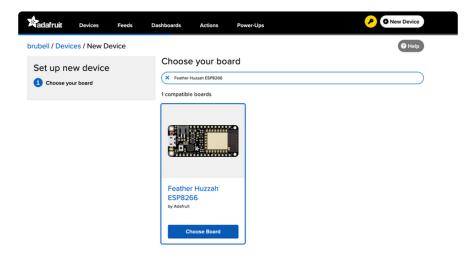
From there, you can add components to your board such as buttons, switches, potentiometers, sensors, and more! Components are dynamically added to hardware, so you can immediately start interacting, logging, and streaming the data your projects produce without writing code.


Sign up for Adafruit.io

You will need an Adafruit IO account to use WipperSnapper on your board. If you do not already have one, head over to io.adafruit.com (https://adafru.it/fsU) to create a fre e account.

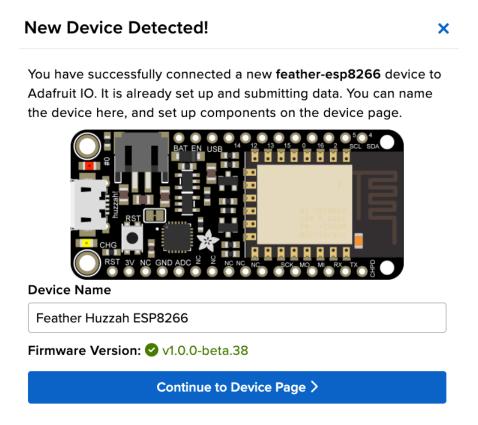

© Adafruit Industries Page 42 of 65

Add a New Device to Adafruit IO


Log into your <u>Adafruit IO</u> (https://adafru.it/fsU) account. Click the New Device button at the top of the page.

After clicking New Device, you should be on the board selector page. This page displays every board that is compatible with the WipperSnapper firmware.

In the board selector page's search bar, search for the Feather HUZZAH ESP8266. On ce you've located the board you'd like to install WipperSnapper on, click the Choose Board button to bring you to the self-guided installation wizard.


© Adafruit Industries Page 43 of 65

Follow the step-by-step instructions on the page to install Wippersnapper on your device and connect it to Adafruit IO.

If the installation was successful, a popover should appear displaying that your board has successfully been detected by Adafruit IO.

Give your board a name and click "Continue to Device Page".

You should be brought to your board's device page. The next step, WipperSnapper Usage, will teach you how to configure and control your development board over the Internet.

© Adafruit Industries Page 44 of 65

Feedback

Adafruit.io WipperSnapper is in beta and you can help improve it!

If you have suggestions or general feedback about the installation process - visit https://io.adafruit.com/support (https://adafru.it/Sgb), click "Contact Adafruit IO Support" and select "I have feedback or suggestions for the WipperSnapper Beta".

Troubleshooting

If you encountered an issue during installation, please try the steps below first.

If you're still unable to resolve the issue, or if your issue is not listed below, get in touch with us directly at https://io.adafruit.com/support (https://adafru.it/Sgb). Make sure to click "Contact Adafruit IO Support" and select "There is an issue with WipperSnapper. Something is broken!"

I don't see my board on Adafruit IO, it is stuck connecting to WiFi

First, make sure that you selected the correct board on the board selector.

Next, please make sure that you entered your WiFi credentials properly, there are no spaces/special characters in either your network name (SSID) or password, and that you are connected to a 2.4GHz wireless network.

If you're still unable to connect your board to WiFi, please make a new post on the WipperSnapper technical support forum with the error you're experiencing, the LED colors which are blinking, and the board you're using. (https://adafru.it/V6a)

© Adafruit Industries Page 45 of 65

I don't see my board on Adafruit IO, it is stuck "Registering with Adafruit IO"

Try hard-resetting your board by unplugging it from USB power and plugging it back in.

If the error is still occurring, please make a new post on the WipperSnapper technical support forum with information about what you're experiencing, the LED colors which are blinking (if applicable), and the board you're using. (https://adafru.it/V6a)

"Uninstalling" WipperSnapper

WipperSnapper firmware is an application that is loaded onto your board. There is nothing to "uninstall". However, you may want to "move" your board from running WipperSnapper to running Arduino or CircuitPython. You also may need to restore your board to the state it was shipped to you from the Adafruit factory.

Moving from WipperSnapper to CircuitPython

Follow the steps on the <u>Installing CircuitPython page</u> (https://adafru.it/Amd) to install CircuitPython on your board running WipperSnapper.

• If you are unable to double-tap the RST button to enter the UF2 bootloader, follow the "Factory Resetting a WipperSnapper Board" instructions below.

Uploading this sketch will overwrite WipperSnapper. If you want to re-install WipperSnapper, follow the instructions at the top of this page.

Moving from WipperSnapper to Arduino

If you want to use your board with Arduino, you will use the Arduino IDE to load any sketch onto your board.

First, follow the page below to set up your Arduino IDE environment for use with your board.

Setup Arduino IDE

https://adafru.it/IRC

© Adafruit Industries Page 46 of 65

Then, follow the page below to upload the "Arduino Blink" sketch to your board.

Upload Arduino "Blink" Sketch

https://adafru.it/IRC

Uploading this sketch will overwrite WipperSnapper. If you want to re-install WipperSnapper, follow the instructions at the top of this page.

Factory Resetting a WipperSnapper Board

Sometimes, hardware gets into a state that requires it to be "restored" to the original state it shipped in. If you'd like to get your board back to its original factory state, follow the guide below.

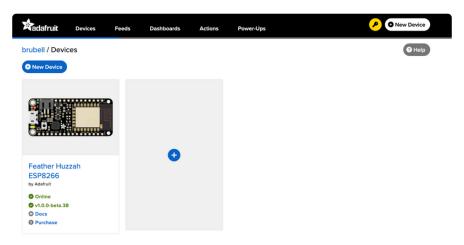
Note: This board does not have a factory reset firmware file. You should upload the Arduino blink sketch by following the instructions above.

WipperSnapper Usage

Now that you've installed WipperSnapper on your board - let's learn how to use Adafruit IO to interact with your board!

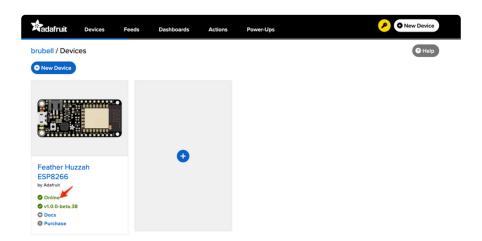
There's a large number of components (physical parts like buttons, switches, sensors, actuators) supported by the WipperSnapper firmware, this page will get you started with the core concepts to build an IoT project with Adafruit IO.

This page assumes that you have installed WipperSnapper on your Feather and registered it with the Adafruit.io WipperSnapper web page. If you have not done this yet, please go back to the previous page in this guide and connect your Feather.

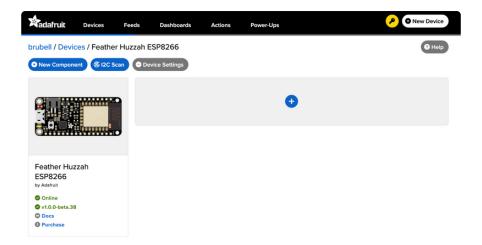

Blink a LED

One of the first programs you typically write to get used to embedded programming is a sketch that repeatably blinks an LED. IoT projects are wireless so after completing this section, you'll be able to turn on (or off) the LED built into your Feather from anywhere in the world.

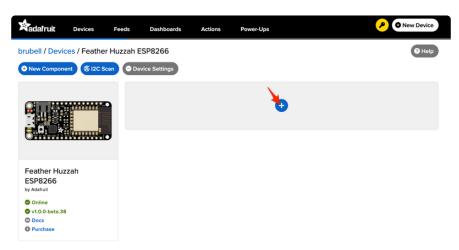
©Adafruit Industries Page 47 of 65


In this demo, we show controlling an LED from Adafruit IO. But the same kind of control can be used for relays, lights, motors, or solenoids.

Navigate to the device page, <u>io.adafruit.com/wippersnapper</u> (https://adafru.it/TAu). You should see the Feather you just connected to Adafruit IO listed on this page.


Verify that your Feather is online and ready to communicate with Adafruit IO by checking that the device tile says Online in green text.

• If the Feather appears offline on the website but was previously connected, press the Reset (RST) button to force the board to reboot.

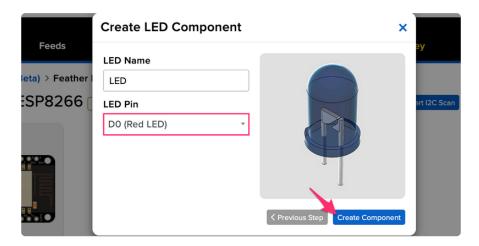


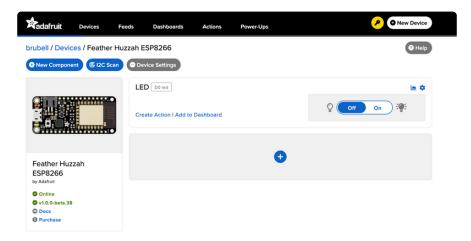
Once verified that the device is online, click the device tile to navigate to the device's interface page.

© Adafruit Industries Page 48 of 65

Add a new component to your Feather by clicking the + button or the + New Component button on the device interface.

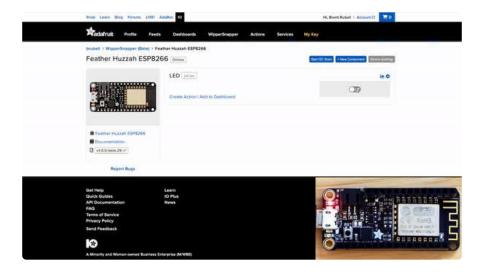
The Component Picker lists all the available components, sensors, and parts, which can be used with the WipperSnapper firmware. Your Feather board already has a LED built-in, so there's no wiring for you to configure.


Click the LED component.


Feathers contain GPIO pins that can be configured either as an input or an output. The "Create LED Component" screen tells WipperSnapper to configure a general-purpose output pin connected to the LED on your Feather as a digital output so you can turn the LED on or off.

© Adafruit Industries Page 49 of 65

The Feather ESP8266 has a built-in LED located at GPIO #0. Select this pin as the LE D Pin and click Create Component

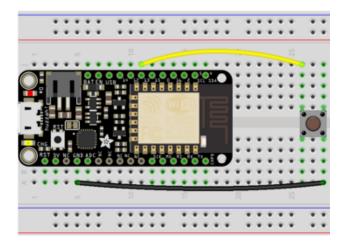

Behind the scenes, Adafruit IO sends send a command to your board running WipperSnapper telling it to configure the GPIO pin as a digital output. Your Feather's interface shows the new LED component.

On the device interface, toggle the LED component by clicking the toggle switch. This should turn your Feather's built-in LED on or off.

Note - the Feather Huzzah ESP8266's LED is reverse wired, so setting the pin LOW will turn the LED on. Therefore, toggling the switch low off will turn the LED on.

© Adafruit Industries Page 50 of 65

Read a Push-Button

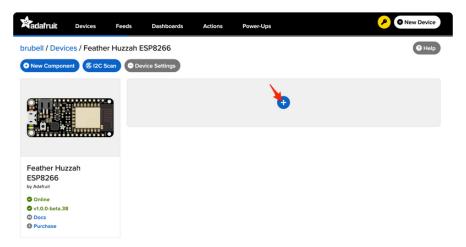

You can also configure a board running WipperSnapper to wirelessly read data from standard input buttons, switches, or digital sensors, and send the value to Adafruit IO.

Let's wire up a push button to your Feather and configure it with Adafruit IO to publish a value to Adafruit IO when the button has been pressed or depressed.

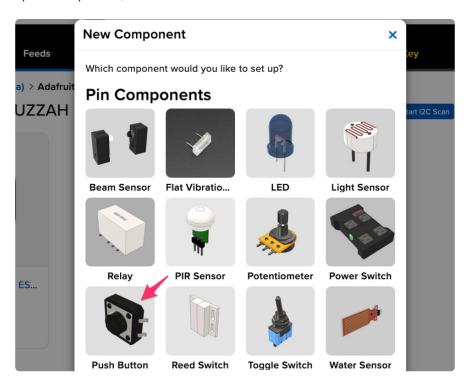
In this demo, we show reading the state of a push-button from WipperSnapper. But the same kind of control can be used for reading switches, break beam sensors, and other digital sensors.

Wiring

We'll be using the Feather's internal pull-up resistors instead of a physical resistor.

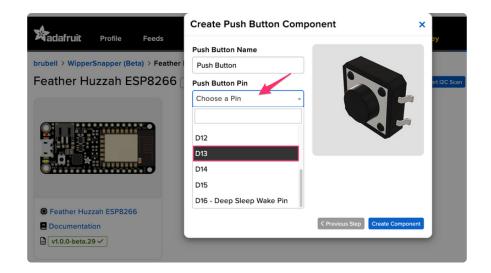


Feather GND to Push Button Feather GPIO 13 to Push Button

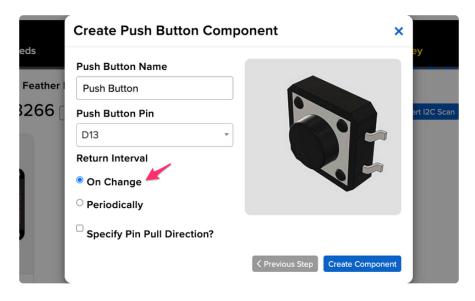

© Adafruit Industries Page 51 of 65

Usage

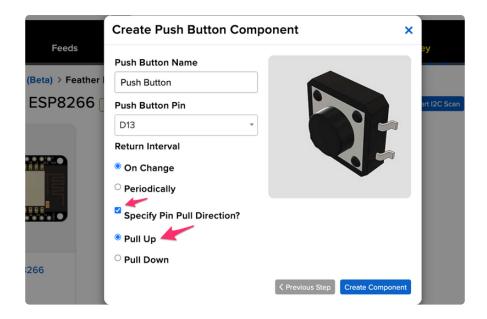
On the device interface, add a new component to your Feather by clicking the + butto n or the + New Component button on the device interface.


From the component picker, select the Push Button.

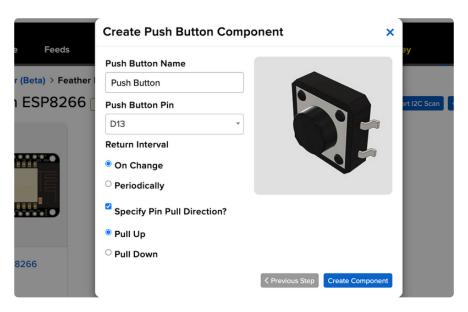
The next screen presents you with options for configuring the push button. Start by selecting the Feather's digital pin you connected to the push button.


Under Push Button Pin, select pin D13.

© Adafruit Industries Page 52 of 65

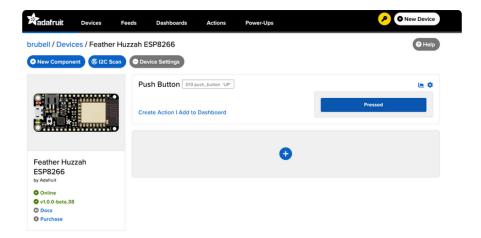

The Return Interval dictates how frequently the value of the push-button will be sent from the Feather to Adafruit IO. For this example, the push-button's value should only be sent when its pressed.

Select On Change

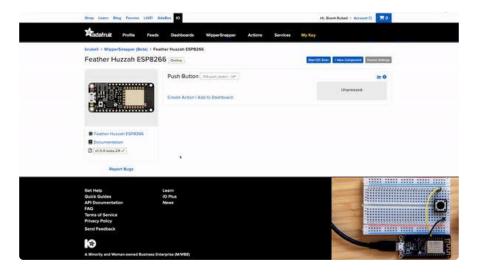


Finally, check the Specify Pin Pull Direction checkbox and select Pull Up to turn on the Feather's internal pullup resistor.

© Adafruit Industries Page 53 of 65



Make sure the form's settings look like the following screenshot. Then, click Create Component.



Adafruit IO should send a command to your board (running WipperSnapper), telling it to configure the GPIO pin you selected to behave as a digital input pin and to enable it to pull up the internal resistor. Your Feather's interface should also show the new push-button component.

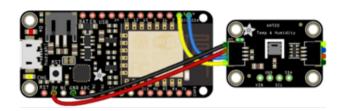
© Adafruit Industries Page 54 of 65

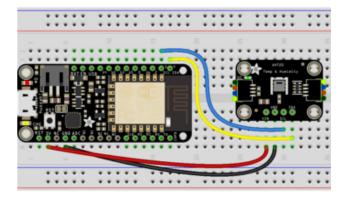
Press the button to change the value of the push button component on Adafruit IO.

Read an I2C Sensor

Inter-Integrate Circuit, aka I2C, is a two-wire protocol for connecting sensors and "devices" to a microcontroller. A large number of sensors, including the ones sold by Adafruit, use I2C to communicate.

Typically, using I2C with a microcontroller involves programming. Adafruit IO lets you configure a microcontroller to read data from an I2C sensor and publish that data to the internet without writing code.


The WipperSnapper firmware supports a number of I2C sensors, viewable in list format here (https://adafru.it/Zbq). If you do not see the I2C sensor you're attempting to use with WipperSnapper - we have a guide on adding a component to Adafruit IO WipperSnapper here (https://adafru.it/Zbr).


© Adafruit Industries Page 55 of 65

The process for adding an I2C component to your board running WipperSnapper is similar to most sensors. For this section, we're using the Adafruit AHT20 (https://adafru.it/RKe), an inexpensive sensor that can read ambient temperature and humidity.

Wiring

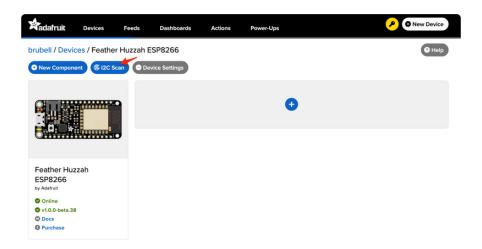
First, wire up an AHT20 sensor to your board exactly as follows. Here is an example of the AHT20 wired to a Feather using I2C with a STEMMA QT cable (no soldering required) (https://adafru.it/FA-).

Board 3V to sensor VIN (red wire on STEMMA QT)

Board GND to sensor GND (black wire on STEMMA QT)

Board SCL to sensor SCL (yellow wire on STEMMA QT)

Board SDA to sensor SDA (blue wire on STEMMA QT)


Scan I2C Bus

First, ensure that you've correctly wired the AHT20 sensor to your Feather by performing an I2C scan to detect the I2C device on the bus.


© Adafruit Industries Page 56 of 65

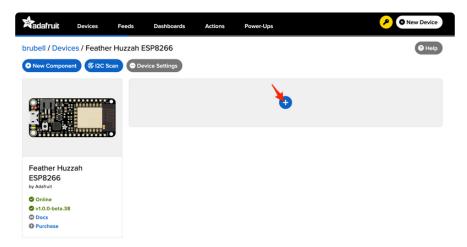
On the upper right-hand corner of the device interface, click Start I2C Scan.

• If you do not see this button, double-check that your Feather shows as Online.

You should see a new pop-up showing a list of the I2C addresses detected by an I2C scan. If wired correctly, the AHT20's default I2C address of 0x38 appear in the I2C scan list.

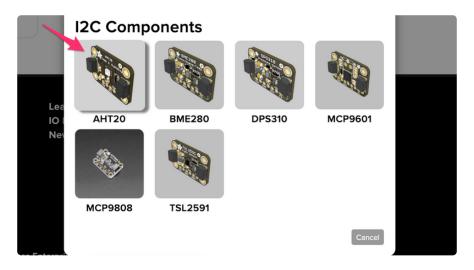
I don't see the I2C sensor's address in the list

First, double-check the connection and/or wiring between the sensor and the board.


Then, reset the board and let it re-connect to Adafruit IO WipperSnapper.

© Adafruit Industries Page 57 of 65

Create the Sensor Component


Now that you know the sensor can be detected by the Feather, it's time to configure and create the sensor on Adafruit IO.

On the device interface, add a new component to your Feather by clicking the + butto n or the + New Component button on the device interface.

The Component Picker lists all the available components, sensors, and parts that can be used with WipperSnapper.

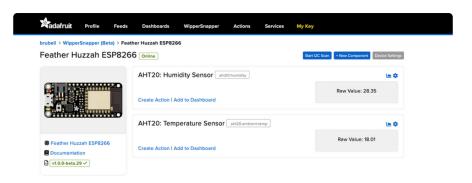
Under the I2C Components header, click AHT20.

On the component configuration page, the AHT20's I2C sensor address should be listed along with the sensor's settings.

The AHT20 sensor can measure ambient temperature and relative humidity. This page has individual options for reading the temperature and the relative humidity. This comes in handy in the case where you have multiple I2C sensors connected to

© Adafruit Industries Page 58 of 65

your Feather which read the same value. You may choose to enable or disable a specific sensor type on this page.


The Send Every option is specific to each sensor measurements. This option will tell the Feather how often it should read from the AHT20 sensor and send the data to Adafruit IO. Measurements can range from every 30 seconds to every 24 hours.

For this example, set the Send Every interval for both seconds to Every 30 seconds and click Create Component.

Create AHT20 Component	×
Select I2C Address:	
0x38 *	To Mil 20
Enable AHT20: Temperature Sensor?	
AHT20: Temperature Sensor	
Send Every:	
Every 30 seconds	
Enable AHT20: Humidity Sensor?	
Name:	
AHT20: Humidity Sensor	
Send Every:	
Every 30 seconds	ζ.
	Create Component Create Component

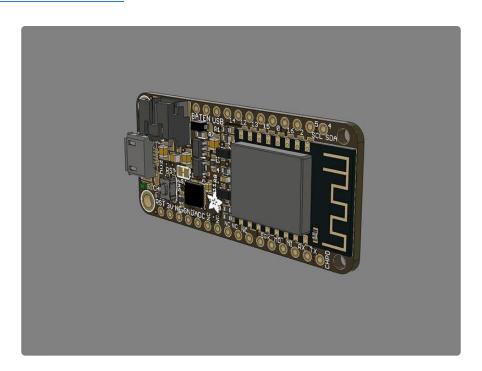
The device interface should now show the AHT20 component you created.

After the interval you configured elapses, WipperSnapper automatically reads values from the sensor and sends them to Adafruit IO.

© Adafruit Industries Page 59 of 65

Going Further

Want to learn more about Adafruit IO WipperSnapper? We have <u>more complex</u> projects on the Adafruit Learning System (https://adafru.it/Yyd).


Using MicroPython

Using MicroPython (https://adafru.it/DH1)

Downloads

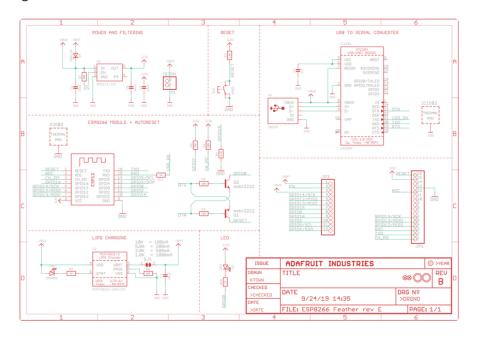
Datasheets & Files

- AP2112K-3.3V regulator onboard (https://adafru.it/mdb)
- CP2104 USB-to-Serial converter (https://adafru.it/jCr)
- EagleCAD PCB Files on GitHub (https://adafru.it/olc)
- Fritzing object in Adafruit Fritzing Library (https://adafru.it/c7M)
- 3D Models on GitHub (https://adafru.it/GAz)

Feather HUZZAH ESP8266 Pinout Diagram

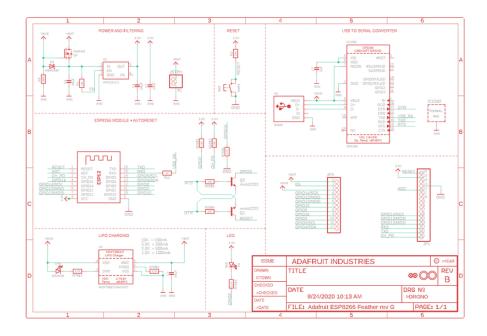
https://adafru.it/z4d

© Adafruit Industries Page 60 of 65

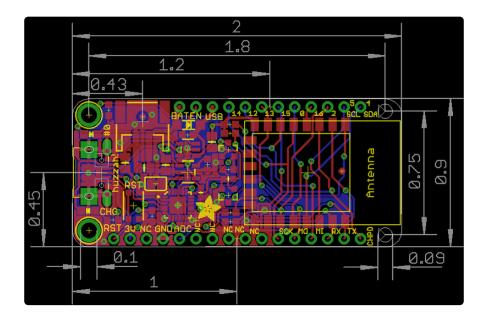

More info about the ESP8266

- ESP8266 specification sheet (https://adafru.it/f1E)
- FCC test report (https://adafru.it/f1S) for the module used on this breakout
- CE test report for the module used on this breakout (https://adafru.it/f1U)
- Huuuuge amount of information on http://www.esp8266.com/ (https://adafru.it/f1F) community forum!
- NodeMCU (Lua for ESP8266) webpage (https://adafru.it/f1G) with examples and documentation on the Lua framework
- Arduino IDE support for ESP8266 (https://adafru.it/eSH)
- NodeMCU PyFlasher a cross platform ESP flashing tool (https://adafru.it/Bg4)

Don't forget to visit esp8266.com for the latest and greatest in ESP8266 news, software and gossip! (https://adafru.it/f1F)


Schematic

Click to enlarge


© Adafruit Industries Page 61 of 65

Rev G Schematic

Fabrication Print

Dimensions in inches

ESP8266 F.A.Q.

© Adafruit Industries Page 62 of 65

When I connect stuff to some of the pins, the Huzzah stops working. Whats up with that?

The ESP8266 uses some of the pins as 'boot mode' pins so on boot they must be set to certain values:

- CH_PD (EN) should be always pulled high (it will disable the entire module if low)
- RST should be always pulled high (it will disable the entire module if low)
- GPIO 0 sets whether the bootloader is active, it must be pulled HIGH during power up/reset for the user program to run. If it's pulled LOW, it will activate the bootloader. The built-in red LED on #0 pulls it up
- GPIO 2 must be pulled high on power up/reset.
- GPIO 15 must be pulled low on power up/reset.

My Huzzah board keeps crashing and resetting, whats up with that?

The most common reason for crashes is power failure. Make sure you're powering the Huzzah with a good ~5V power supply, and if you're using a USB-Serial cable, that it's plugged into the mainboard of your computer or through a powered hub!

I can't seem to find the Serial port on my computer for the Feather HU77AH?

Don't forget to install the CP2104 VCP drivers (https://adafru.it/jCs) for your computer, they are required!

I still can't seem to find the Serial port on my computer for the Feather Huzzah!

Many cheap electronics come with charge-only USB cables, which cause headaches later. Make sure you are using a proper data/sync USB cable. If you find a cable that is charge-only (not data/sync also) throw it out so you don't have the same problem again.

So, I'm getting a 'no such file' error compiling for ESP8266 on my Mac

If your error message looks like this:

© Adafruit Industries Page 63 of 65

fork/exec /Users/xxxxxxx/Library/Arduino15/packages/esp8266/tools/xtensa-lx106-elf-gcc/1.20.0-26-gb404fb9-2/bin/xtensa-lx106-elf-g++: no such file or directory Error compiling.

To fix this problem, do this:

- 1. Open the Boards Manager in the Arduino IDE
- 2. Uninstall the ESP8266 support
- 3. go to your "Library folder (in the Finder, select "Go::Go to folder:, and enter "Library). Find the folder Arduino15.
- 4. In the Arduino15 folder, go into packages, and delete the folder esp8266
- 5. Go back to the Arduino IDE, and install ESP8266 board support.
- 6. Now go back to the Finder, and check that you have the xtensa-lx106-elf-g++ file in the path Arduino15/packages/esp8266/tools/xtensa-lx106-elf-gcc/ 1.20.0-26-gb404fb9-2/bin/xtensa-lx106-elf-g++
- 7. That's it!

Whenever I start or reset the ESP8226 there's a bunch of "gibberish" on the Serial console

This is the ROM debug messages, it's transmitted at 74880 baud so you rarely see it in proper 'ascii output' - instead usually it gets corrupted into a bunch of strange characters.

I'm having difficulties uploading to the HUZZAH with the Arduino IDE

Make sure you're using a good quality USB/Serial cable. Install the official drivers for that cable too! We've also noticed that PL2303-based cables don't work on Macs for some reason. FTDI or CP210x based chipsets work best

I tried that, but I'm still having difficulties uploading with the Arduino IDE

Sometimes, it helps to switch the board type to "Generic ESP8266 Module". Set the Reset Method to "nodemcu"

See this forum post (https://adafru.it/mPB)

© Adafruit Industries Page 64 of 65

I'm stuck in bootloader mode and can't upload

You say your led is stuck on dim and you get an error trying to upload? And you're sure your serial cable is connected and working correctly? Well, here's a potential fix: Connect the GPIOO pin to GND through a 220 ohm resistor. Leave it connected while you upload. You may have to try it a couple of times, but it should eventually upload and get the HUZZAH unstuck from bootload mode! You can then remove the resistor connection, and your HUZZAH will be happy ever after!

(Note: you may also have to tie RST and EN (CH_PD) together to get this to work. Remove the connection once you have the module programmed).

Thanks to forum user misslevania for the tip (https://adafru.it/doW)!

I can't get Lua to respond to my commands

Make sure your terminal software is sending correct line endings! The default PuTTY settings may be wrong when trying to talk to Lua on an ESP8266. Lua expects CRLF "\r\n" line endings, and apparently PuTTY defaults to just LF "\n"!

© Adafruit Industries Page 65 of 65