Ultrasonic Sensors Single Head System with one Switch Output

- Switch output

- 5 different output functions available
- Teaching input
- Can be synchronised
- Can be deactivated
- Watchdog

Synchronisation:

In order to suppress mutual interference, the sensor operates via one sychronised input. If the input is unswitched, the senor operates at an internally generated pulse rate. The sensor can be synchronised by the super position of the square - shaped voltage. One synchronising pulse at the synchronisation input enables one measuring cycle to be completed. The pulse width must be greater than $100 \mu \mathrm{~s}$. The measuring cycle commences with the descending flank. The state of the switching output changes after the switching threshold has been exceeded five times, as determined internally by five measurements. A low level $\geq 1 \mathrm{~s}$, or an open synchronisation input results in normal operation of the sensor. Synchronisation cannot take place during teaching and vice versa.

Two operating modes are possible:

1. Multiple sensors are controlled with the same synchronising signal. The sensors operate on the same pulse.
2. The synchronising pulses are fed cyclically to only one sensor at a time. The sensor soperate in multiplex mode. A high level at the sychronisation input deactivates the sensor.

To set the Switch Points

The ultrasonic sensor is provided with a switching output with two teachable switch points. These are set up by applying the supply voltage $-U_{B}$ bzw. $+U_{B}$ to the teaching input. The supply voltage should be applied to the teaching input for at least 1 s . During the teaching process the LED's indicate whether the sensor has recognised the target. The switch points A1 and A2 are taught by voltage $-U_{B}$ and $+U_{B}$, respectively.

Five functions can be set:

1. Window mode, normally open function
2. Window mode, normally closed function
3. One switch point, normally open function 4. One switch point, normaly closed function
4. Detection of presence of object

Detection range: Version:	$500 \mathrm{~mm} . . .4000 \mathrm{~mm}$ Figure 1 Transceiver with one switch output
Order code: pnp npn	UB 4000-30GM-E2-V15 UB 4000-30GM-E0-V15
Operating data: Detecting range Standart test plate (min. flat surface) Close range (unsuitable for switching) Aperture angle of sonic lobe Transducer frequency Response time Switching hysteresis Reproducibility Temperature drift Operating cycle frequency Measuring cycle time t_{m} Synchron. frequency equi-pulsed Synchron. frequency multiplex	```\(500 \mathrm{~mm} . .4000 \mathrm{~mm}\) \(100 \mathrm{~mm} \times 100 \mathrm{~mm}\) \(0 \mathrm{~mm} . .500 \mathrm{~mm}\) approx. \(5^{\circ}\) at -3 dB approx. 85 kHz approx. 280 ms \(\leq 1 \%\) of the set operating distance \(\leq 1\) \% 0.2 \% / K max. 1.7 Hz approx. 48 ms \(\leq 1 / t_{m 1}\) \(\leq 1 / t_{m 1}+1 / t_{m 2}+\ldots\)```
Electrical Data: Operating voltage U_{B} Ripple Rated operating current Switch output pnp $n p n$ Teaching input Synchronising input Synchronisation pulse width Synchronisation pause width Indicators: LED green LED red LED yellow	
Mechanical Data: Operating temperature range Storage temperature range Protection class to DIN 40050 Permissible shock and vibration loading ${ }^{5}$ Connection type	$\begin{aligned} & 248 \text { Kelvin } \ldots 343 \text { Kelvin }\left(-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\right) \\ & 233 \text { Kelvin } \ldots 358 \text { Kelvin }\left(-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}\right) \\ & \text { IP } 65 \\ & \mathrm{~b} \leq 30 \mathrm{~g}, \mathrm{~T} \leq 11 \mathrm{~ms} \\ & \mathrm{f} \leq 55 \mathrm{~Hz}, \mathrm{a} \leq 1 \mathrm{~mm} \\ & \text { Equipment connector }-\mathrm{V} 15 \end{aligned}$
In compliance with 5) to IEC 68-2-6 and IEC 68-2-27	EN 60974-5-2

Teach window operation, normally open function:

- Set target at near switch point
- Teach switch point A1 with - $U_{\text {B }}$
- Set target at far switch point
- Teach switch point A2 with $+U_{B}$

Teach window operation, normally closed function:

- Set target at near switch point
- Teach switch point A2 with $+U_{B}$
- Set target at far switch point
- Teach switch point A1 with - U_{B}

Teach one switch point, normally open function:

- Set target at near switch point
- Teach switch point A2 with $+U_{B}$
- Cover sensor with the palm of the hand, or remove all objects from the detection range of the sensor
- Teach switch point A1 with $-U_{B}$

Teach one switch point, normally closed function:

- Set target at near switch point
- Teach switch point A1 with - U_{B}
- Cover sensor with the palm of the hand, or remove all objects from the detection range of the sensor
- Teach switch point $A 2$ with $+U_{B}$

Teach detection of presence of object:

- Cover sensor witch the palm of the hand, or remove all objects from the detection range of the sensor
- Teach switch point A1- U_{B}
- Teach switch point $A 2+U_{B}^{B}$

Pre-setting of the switch points:
A1: Near range
A2: Nominal range

Note:

A programming Unit UB-PROG1 is obtainable for the basic setting of the switch points and output functions.

Standard symbol / Connections:

Transceiver (version E2, pnp)

Transceiver (version E0, npn)

V15 Connector arrangement:

Accessories:

Cable connectors, see catalogue of inductive, capacitive and magnetic sensors and section 3.9 - Accessories.

Operating condition - Indications	Green LED	Red LED	Yellow LED
Switch point teaching	flashing	off	off flashing off
object detected			
No object detected			
Object uncertain (teaching invalid)	on	off	switch off condition
Normal operation	off	flashing	last condition
Interference (e.g. comp. air)			

Programmed switching output function

Window operation, normally open function

Window operation, normally closed funktion
$A_{2}<A_{1}$:

One switch point, normally open function
\square
One switch point, normally closed function
$A_{2}->\infty$:

$A_{1}->\infty, A_{2}->\infty$: Detection of presence of object
Object detected: Switch output closed
No object detected: Switch output open

