FX-100 serkes

FIBER
SENSORS
LASER
SENSORS

HUMAN MACHINE
INTERFACES

UV CURING SYSTEMS

Related Information	$\text { ■ Glossary of terms / General precautions.......P. 1359~ / P. } 1405$

FX-100 series has been modificated from July 2011 production. The color of enclosure has been changed from white to dark gray and the protection cover has been attached.

Taking fiber sensors to the next level

Setup is made simple, using a dual digital display

The dual digital display allows users to check both the threshold value and incident light intensity at the same time, allowing for clear and intuitive control of the sensor's functions.

Commercially-available connectors are used so that lead time and spare part numbers can both be reduced

The connectors used are commercially-available connectors, so that processing costs and lead time required for carrying out processing after purchase of the sensors can be greatly reduced. The same connection parts as the DP-100 series of digital pressure sensors and the PM-64 series of micro photoelectric sensors can be used.

Commercially-available press-fit connectors are used, so that the processing costs for connection cables can be greatly reduced.

158

Saving-space with a width of 9 mm 0.354 in

Very slim at only 9 mm 0.354 in . This is much thinner than existing fiber sensors. Even if the difference is small when only using one unit, when using many units this makes a very large difference.

Improved stability over both long terms
Utilizes the standard Panasonic Electric Works SUNX digital fiber sensor element "Four-chemical emitting element" for light emission. The light emission is guaranteed to be stable over long periods of time.

Simple operation due to clear operation system

We are using the operation system of digital pressure sensor DP-100, which has been highly praised since it went on sale. We have separated the settings levels into three levels: RUN mode, SET mode, and PRO mode, making operation simpler and easier.

Quick code input function

RUN mode
Simply imputing the default setting "Code (number)" will enable sensor settings. Even if the settings are accidentally changed, imputing the code will restore the default settings.
Confirmation can be carried out smoothly via telephone by simply quoting numbers. This can be of great assistance when dealing with foreign country customers.

FIBER
FIBER
SENSORS
LASER
SENSORS

PHOTOELECTRIC

SENSORS
MICRO
PHOTOELECTRIC
SENSORS
AREA
SENSORS
LIGHT
CURTAINS
PRESSURE /
FLOW
SENSORS
INDUCTIVE
PROXIMITY
SENSORS
PARTICULAR
USE SENSORS
SENSOR
OPTIONS
SIMPLE
WIRE-SAVING
UNITS
WIRE-SAVING
SYSTEMS

MEASUREMEN
SENSORS
STATIC CONTROL DEVICES

ENDOSCOPE

LASER
MARKERS

TERMINALS

HUMAN MACHINE INTERFACES

ENERGY CONSUMPTI
VISUALIZATION

FA COMPONENTS

MACHINE VISION SYSTEMS

UV CURING SYSTEMS

Selection Guide
Fibers
Amplifiers
FX-500
FX-100
FX-300
FX-410
FX-311
FX-301-F7I
FX-301-F

$$
\begin{array}{r}
\text { PHOTOELECTRIC } \\
\text { SENSORS } \\
\hline
\end{array}
$$

MICRO
PHOTOELECTRIC SENSORS

AREA
SENSORS
LIGHT
CURTAINS
PRESSURE/
FLOW
SENSORS
PROXIMITY
SENSORS
PARTICULAR
USE SENSORS
SENSOR
OPTIONS
SIMPLE
WIRE-SAVING
UNITS
WIRE-SAVING
SYSTEMS
EASUREMENT SENSORS
STATIC CONTROL
DEVICES

ENDOSCOPE

MARKERS
PLC /
TERMINALS
HUMAN MACHINE
INTERFACES

UV CURING SYSTEMS

Selection Guide
Fibers
Amplifiers

FX-500
FX-100
FX-300
FX-410
FX-311
FX-301-F7I FX-301-F

Teaching using ON / OFF buttons
 SET mode

Simply press the ON button when an object is present and OFF when it is not. There is no need to switch settings or make judgments between Light-ON (L _ an) and Dark-ON (d_on).

<Setting example>

Thru-beam type / Retroreflective type

Teaching is possible even without work.
Limit teaching function
This carries out teaching and sets threshold values only when no object is present (when the incident light amount is stable). This is useful when sensing objects if there are other objects in the background and when sensing minute objects. Teaching can also be carried out using external input.

Save maintenance time Threshold tracking function

PRO mode
This function seeks changes in the light emitting amount resulting from changes in the environment over long periods (such as dust levels), so that the incident light intensity can be checked at desired intervals and the threshold values can be reset automatically. Reduces the number of man-hours needed for maintenance.

* Becomes active when the output operation is set to on, the beams are not received, and when using semi-transparent or mirrored reflective cable.

Resolves variation in incident light intensity display GETA function
 PRO mode

Even when performing the same sensing operation, there may be variances in the digital values of the fiber amp. There is no problem with the sensor itself, but the operator may find it troubling.
Given value can be corrected with the GETA function, so the apparent variation can be eliminated and the creation of operation manuals can proceed smoothly.

Stable detection of minute objects or transparent objects

 Attenuation functionSET mode
If the light receiving level becomes saturated when sensing over short distances or when sensing transparent objects or minute objects, the light emitting amount can be reduced so that stable sensing can be provided without needing to change the response time. On previous models, there was only one light reduction level, but now there are 3 levels plus an automatic mode. As before, even when the fiber and distance settings needed to be altered for proper sensing, this function can allow simple settings alterations.

Interference prevention function
SET mode

FX-101ם: Interference prevention for up to 3 units
FX-102a: Interference prevention for up to 4 units
The emission frequencies can be set separately for each unit in order to avoid interference. The emitted light flashes while setting is in progress, so that you can see at a glance which fiber sensor is currently being set. There is no need to place the amplifiers close together like there was before, and so the amplifiers can be set up apart from each other.

* When the emission frequencies are changed, the response times will
also change.

The emitted light and output indicator flash at the same frequency.

Multi-function external input PRO mode

Settings such as emission halt, limit / auto teaching, 2-point teaching and ECO settings can be carried out via external input. Also, the threshold value can be memorized.

Digital display inversion setting

The viewing orientation of the digital display can be inverted in accordance with the setting direction of the amplifier.

Alert function

PRO mode
When the amount light received approaches the threshold value, the display can be made to blink in order to alert the operator.
<When using at a shift amount of 20% and a threshold value of 1,000 >
The amount of light received ranges from about 900 to 1,100 when the digital indicator flashes.

Setting copy function to reduce man-hours and human error
 PRO mode

By attaching a fiber sensor to each device that is to be the fiber sensor master, the master sensor settings can be copied along with data transmissions. By synchronizing the settings on all the devices, trouble from setting errors can be prevented, meaning fewer changes to the instruction manuals even when equipment design is changed.

Copiable setting

Threshold value, output operation setting, timer operation setting, timer period setting, light-emitting amount selection setting (attenuation function), shift setting, ECO setting, digital display inversion setting, and threshold value margin setting (alert function)

Flexible mounting without bracket

You can choose either DIN rail mounting or mounting with M3 screws through penetrating holes on the side of the amplifier. When mounting directly or installing only one amplifier or installing to a moving part, there is no slippage.

Use normal or long distance varieties

Response time and sensing range differ with standard or long sensing range types.
Select the best type for your needs.

Model No.	Type	Sensing range $($ FT-B8)	Response time
FX-101	Standard type	$400 \mathrm{~mm} \mathrm{15.748}$ in	Fastest $250 \mu \mathrm{~s}$
FX-102	Long sensing range type	$1,150 \mathrm{~mm} 45.276$ in	Fastest 2.5 ms

Electricity consumption saving possibilities

```
ECO
```

After setting, if about 20 seconds go by without any key operations taking place the digital display will turn off and energy consumption is kept under 600 mW . (When illuminated it is under 720 mW)

FIBER
SENSORS
LASER
SENSORS
PHOTOELECTRIC
SENSORS
MICRO
PHOTOELECTRIC
SENSORS
AREA
SENSORS
LIGHT
CURTAINS
PRESSURE /
FLOW
SENSORS
INDUCTIVE
PROXIMITY
SENSORS
PARTICULAR
USE SENSORS
SENSOR
OPTIONS
SIMPLE
WIRE-SAVIN
UNITS
WIRE-SAVING
SYSTEMS

MEASUREMENT

SENSORS
STATIC CONTROL DEVICES

ENDOSCOPE

LASER
MARKERS
PLC /
TERMINALS
HUMAN MACHINE INTERFACES

ENERGY CONSUMPTION
VISUALLZATION
COMPONENTS
FA COMPONENTS

MACHINE VISION
SYSTEMS
UV CURING SYSTEMS

Selection
 Guide
 Fibers

Amplifiers

FX-500

FX-100
FX-300
FX-410
FX-311
FX-301-F7
FX-301-F

ORDER GUIDE

Amplifiers

Accessory

- CN-14A-C2
(Connector attached cable 2 m 6.562 ft)
* Only include cable set type

- FC-FX-1 (Protection cover)

Notes: 1) The connector attached cable CN-14A-C2 is supplied with the amplifier.
2) Make sure to use the optional connector attached cable $\mathbf{C N}-14 \mathrm{~A}(-\mathrm{R})-\mathrm{C}_{\square}$ or the connector $\mathbf{C N}-14 \mathrm{~A}$, or a connector manufactured by J.S.T. Mfg. Co., Ltd. (contact: SPHD-001T-P0.5, housing: PAP-04V-S)
3) Make sure to use the optional M8 connector attached cable CN-24A-C \square.

OPTIONS

Designation	Model No.	Description	
Connector attached cable	CN-14A-C1	1 m 3.281 ft	$0.02 \mathrm{~mm}^{2}$ 4-core cabtyre cable with connector on one end Cable outer diameter: $\varnothing 3.7 \mathrm{~mm} ø 0.146$ in
	CN-14A-C2 (Note 1)	2 m 6.562 ft	
	CN-14A-C3	3 m 9.843 ft	
	CN-14A-C5	5 m 16.404 ft	
Connector attached cable (Flexible type)	CN-14A-R-C1	1 m 3.281 ft	
	CN-14A-R-C2	2 m 6.562 ft	
	CN-14A-R-C3	3 m 9.843 ft	
	CN-14A-R-C5	5 m 16.404 ft	
M8 connector attached cable	CN-24A-C2	2 m 6.562 ft	For M8 plug-in connector type The connector on one end Cable outer diameter: $\varnothing 4 \mathrm{~mm} \varnothing 0.157$ in
	CN-24A-C5	5 m 16.404 ft	
Connector	CN-14A	Set of 10 housings and 40 contacts	
Amplifier mounting bracket	MS-DIN-4	Mounting bracket for amplifier	
End plates	MS-DIN-E Two pcs. per set	When it moves depending on the way it is installed on a DIN rail, these end plates ensure that all amplifiers are mounted together in a secure and fully connected manner.	
Copy unit (Note 2)	SC-SU1	Copy the controller settings to other controllers.	

M8 connector attached cable

- CN-24A-C \square

Amplifier mounting bracket

Connector attached cable

- CN-14A(-R)-C \square

Connector

- CN-14A

Recommended crimping tool

Model No.: YC-610R (Manufactured by J.S.T. Mfg. Co., Ltd.)
Note: Contact the manufacturer for details of the recommended products.

LIST OF FIBERS

Thru-beam type (one pair set)
Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1)		Type	Fiber cable length $8 \times$: Free-cut	Dimensions
	Standard type FX-101■	Long sensing range type FX-102			
FT-30	1355.315	40015.748	Super quality, 80.5 mm 00.020 in, Flexible	2 m 6.562 ft	P. 90
FT-31	1305.118	34013.386	M3, Flexible	$8 \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 90
FT-40	32012.598	87034.252	Super quality, $\varnothing 1 \mathrm{~mm} ø 0.039 \mathrm{in}$, Flexible	2 mb 662 ft	P. 90
FT-41	30011.811	80031.496	Metal-free		P. 90
FT-42	30011.811	80031.496	M4, Flexible		P. 90
FT-A8	1,500 59.055	3,500 137.795 (Note 2)			P. 90
FT-A30	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)		$8 \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 90
FT-AFM2	28011.024	72028.346			P. 90
FT-AFM2E	2409.449	67026.378	Aray		P. 90
FT-B8	40015.748	1,150 45.276	M4		P. 90
FT-E12	60.236	190.748	Ultra-small dia.	500 mm 19.685 in	P. 91
FT-E13	60.236	190.748	Ultra-small dia., Flexible	\% 1 m 3.281 ft	P. 91
FT-E22	150.591	602.362	Ultra-small dia.	1 m 3.281 ft	P. 91
FT-E23	220.866	803.150	Ultra-small dia., Flexible	\%< 1 m 3.281 ft	P. 91
FT-FM2	30011.811	80031.496	M4		P. 91
FT-FM2S	30011.811	80031.496		¢ 2 m 6.562 ft	P. 91
FT-FM2S4	30011.811	80031.496	Sleeve		P. 91
FT-FM10L	9,300 366.142	15,000 590.551	M14, Long sensing range	\% ${ }^{\text {c }} 10 \mathrm{~m} 32.81 \mathrm{ft}$	P. 91
FT-H13-FM2	2509.843	70027.559	Heat-resistant, $130^{\circ} \mathrm{C} 266{ }^{\circ} \mathrm{F}$	\% 2 m 6.562 ft	P. 91
FT-H20-J20-S (Note 3)	1355.315	42016.535		$8 \times 200 \mathrm{~mm} 7.874$ in (Note 4)	P. 92
FT-H20-J30-S (Note 3)	1355.315	42016.535	Heat-resistant, Joint $200^{\circ} \mathrm{C} 392{ }^{\circ} \mathrm{F}$	\% 8300 mm 11.811 in (Note 4)	P. 92
FT-H20-J50-S (Note 3)	1355.315	42016.535		\% 500 mm 19.685 in (Note 4)	P. 92
FT-H20-M1	2108.268	54021.260	Heat-resistant, $200{ }^{\circ} \mathrm{C} 392{ }^{\circ} \mathrm{F}$	1 m 3.281 ft	P. 92
FT-H20-VJ50-S (Note 3)	1505.906	50019.685	Heat-resistant,	\% ${ }^{\text {¢ }}$ ($500 \mathrm{mm19.685}$ in (Note 4)	P. 92
FT-H20-VJ80-S (Note 3)	1505.906	50019.685	Side-view	\% 800 mm 31.496 in (Note 4)	P. 92
FT-H20W-M1	1003.937	30011.811	Heat-resistant, $200{ }^{\circ} \mathrm{C} 392{ }^{\circ} \mathrm{F}$		P. 92
FT-H30-M1V-S (Note 5)	1104.331	28011.024	Vacuum-resistant, Heat-resistant	ft	P. 92
FT-H35-M2	1706.693	49019.291	Heat-resistant, $350^{\circ} \mathrm{C} 662{ }^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 92
FT-H35-M2S6	1706.693	49019.291	Sleeve	2 m 6.562 t	P. 92
FT-HL80Y	99038.976	2,340 92.126	Chemical-resistant, Heat-resistant	$\%^{¢} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$ (Note 6)	P. 92
FT-K8	1,000 39.370	3,000 118.110	Narrow beam		P. 93
FT-KV1	1355.315	50019.685	Side-view	$8 \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 93
FT-KV8	1,000 39.370	3,000 118.110	Side-view		P. 93
FT-L80Y	1,100 43.307	2,600 102.362	Chemical-resistant	¢ $\times 2 \mathrm{~m} 6.562 \mathrm{ft}$ (Note 6)	P. 93
FT-NFM2	1305.118	28011.024	M3		P. 93
FT-NFM2S	1305.118	28011.024	M3 Sleove	\% 2 m 6.562 ft	P. 93
FT-NFM2S4	1305.118	28011.024	M3, Sleeve		P. 93
FT-P2	1204.724	33012.992	$ø 1.5 \mathrm{~mm} ø 0.059 \mathrm{in}$, Flexible	1 m 3.281 ft	P. 93
FT-P40	803.150	2409.449	M3, Flexible		P. 93
FT-P60	1305.118	30011.811		\% 2 m 6.562 ft	P. 93
FT-P80	2309.055	65025.591	M4, Flexible		P. 93
FT-P81X	26010.236	80031.496	M4, Tough flexible	1 mm 381 ft	P. 94

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The fiber cable length practically limits the sensing range to $3,500 \mathrm{~mm} 137.795$ in long.
3) Heat-resistant joint fibers and ordinary-temperature fibers (FT-FM2) are sold as a set.
4) This is the fiber length (fixed length) for heat-resistant fibers. The ordinary-temperature fibers are free-cut to 2 m 6.562 ft .
5) Sold as a set comprising vacuum type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8).
6) The allowable cutting range is 500 mm 19.685 in from the end that the amplifier inserted.

LIST OF FIBERS

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1)		Type	Fiber cable length \%<: Free-cut	Dimensions
	Standard type FX-101]	Long sensing range type FX-102			
FT-PS1	401.575	903.543	ø1 mm ø0.039 in, Flexible	500 mm 19.685 in	P. 93
FT-R80	1807.087	43016.929	M4, Elbow	\% 2 m 6.562 ft	P. 94
FT-S20	1355.315	40015.748	Super quality, $\varnothing 0.5 \mathrm{~mm}$ $\varnothing 0.020$ in, Flexible	2 m 6.562 ft	P. 94
FT-S21	1305.118	34013.386	$ø 1.5 \mathrm{~mm} ø 0.059 \mathrm{in}$, Flexible	\%< 2 m 6.562 ft	P. 94
FT-S30	32012.598	87034.252	Super quality, $\varnothing 1 \mathrm{~mm}$ $\varnothing 0.039$ in, Flexible	2 mb 662 ft	P. 94
FT-SFM2	30011.811	80031.496	$ø 2.5 \mathrm{~mm} \varnothing 0.098$ in	\% 2 m 6.562 ft	P. 94
FT-SFM2L	76029.921	2,400 94.488	$ø 2.5 \mathrm{~mm} ø 0.098 \mathrm{in}$, Long sensing range		P. 94
FT-SFM2SV2	1807.087	47018.504	Side-view		P. 94
FT-SNFM2	1305.118	28011.024	$\varnothing 1.5 \mathrm{~mm}$ ø0.059 in		P. 95
FT-T80	30011.811	80031.496	M3		P. 95
FT-V10	1,000 39.370	2,350 92.520	Side-view	\% 2 m 6.562 ft	P. 95
FT-V22	1405.512	38014.961		1 m 3.281 ft	P. 95
FT-V41	401.575	1204.724		\% 2 m 6.562 ft	P. 95
FT-V80Y	34013.386	80031.496	Chemical-resistant, Side-view	\% 2 m 6.562 ft (Note 3)	P. 95
FT-W4	803.150	2208.661	M3, Sharp bending	${ }_{\text {¢ }} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 95
FT-W8	26010.236	65025.591	M4, Sharp bending		P. 95
FT-WA8	1,500 59.055	3,500 137.795 (Note 2)	Wide beam		P. 95
FT-WA30	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)			P. 95
FT-WKV8	70027.559	2,200 86.614	Narrow beam, Sharp bending		P. 96
FT-WR80	2158.465	57022.441	M4, Square head, Sharp bending		P. 96
FT-WR80L	43016.929	1,150 45.276			P. 96
FT-WS3	1505.906	60023.622	ø3 mm ø0.118 in, Sharp bending		P. 96
FT-WS4	803.150	2208.661	$\varnothing 1.5 \mathrm{~mm} \varnothing 0.059 \mathrm{in}$, Sharp bending		P. 96
FT-WS8	26010.236	65025.591	$ø 2.5 \mathrm{~mm} ø 0.098$ in, Sharp bending		P. 96
FT-WS8L	60023.622	1,500 59.055	ø3 mm ø0.118 in, Sharp bending		P. 96
FT-WV42	301.181	803.150	Side-view, Sharp bending		P. 96
FT-WZ4	2309.055	67026.378	Rectangular, Compact, Sharp bending	\% 1 m 3.281 ft	P. 96
FT-WZ4HB	803.150	2309.055			P. 97
FT-WZ7	33012.992	1,000 39.370		\%< 2 m 6.562 ft	P. 97
FT-WZ7HB	1907.480	58022.835			P. 97
FT-WZ8	33012.992	95037.402			P. 97
FT-WZ8E	70027.559	2,100 82.677			P. 97
FT-WZ8H	1,200 47.244	2,800 110.236			P. 97
FT-Z8	36014.173	1,000 39.370	Rectangular, Flexible		P. 97
FT-Z8E	80031.496	1,850 72.835			P. 97
FT-Z8H	1,400 55.118	3,100 122.047			P. 97
FT-Z802Y	52020.472	3,100 122.047	Chemical-resistant, Rectangular		P. 97

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The fiber cable length practically limits the sensing range to $3,500 \mathrm{~mm} 137.795$ in long.
3) The allowable cutting range is 500 mm 19.685 in from the end that the amplifier inserted.

LIST OF FIBERS

Retroreflective type

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1) (Note 2)		Type	Fiber cable length $8 \times$: Free-cut	Dimensions
	Standard type FX-101■	Long sensing range type FX-102			
FR-KV1	15 to 2000.591 to 7.874	15 to 3600.591 to 14.173	Wafer mapping	\% 2 m 6.562 in	P. 98
FR-KZ21	20 to 2000.787 to 7.874	20 to 2000.787 to 7.874	Narrow beam, Top sensing		P. 98
FR-KZ21E	20 to 2000.787 to 7.874	20 to 2000.787 to 7.874	Narrow beam, Side sensing		P. 98
FR-WKZ11	100 to 5503.937 to 21.654	100 to 8303.937 to 32.677	Sharp bending		P. 98

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
The sensing range of FR-WKZ11 is specified for the RF-13. The sensing range of FR-KZ21, FR-KZ21E is specified for the attached reflector RF-003.
The sensing range of FR-KV1 is specified for the attached reflector.
Refer to p .166 for sensing range when FR-WKZ11 is used in combination with a reflector (optional).
2) The sensing range of retroreflective type is the possible setting range for the attached reflector. The fiber can detect an object less than setting range for the reflector. However, note that if there are any white or highly-reflective surfaces near the fiber head, reflected incident light may affect the fiber head. If this occurs, adjust the threshold value of the amplifier unit before use.

Reflective type

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1) (Note 2)		Type	Fiber cable length 8): Free-cut	Dimensions
	Standard type FX-101■	Long sensing range type FX-102			
FD-30	451.772	1556.102	Super quality, M3, Flexible	2 m 6.562 ft	P. 99
FD-31	351.378	1405.512	M3, Flexible	\& 2 m 6.562 ft	P. 99
FD-40	451.772	1556.102	Super quality, M4, Flexible	2 mm .562 ft	P. 99
FD-41	351.378	1405.512	M4, Flexible	\% 2 m 6.562 ft	P. 99
FD-60	1405.512	42016.535	Super quality, M6, Flexible	2 m 6.562 ft	P. 99
FD-61	1204.724	41016.142	M6, Flexible	${ }_{8} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 99
FD-A15	1254.921	2509.843	Wide beam		P. 99
FD-AFM2	1054.134	28511.220	Array, Top sensing		P. 99
FD-AFM2E	853.346	2459.646	Array, Side sensing		P. 99
FD-B8	1706.693	44017.323	M6		P. 99
FD-E12	3.50 .138	130.512	Ultra-small dia.	1 m 3.281 ft	P. 100
FD-E22	160.630	451.772			P. 100
FD-EG1	180.709	501.969	M3, High precision	500 mm 19.685 in	P. 100
FD-EG2	100.394	301.181			P. 100
FD-EG3	70.276	220.866			P. 100
FD-EN500S1	10.039	40.157	M3, Sleeve		P. 100
FD-ENM1S1	150.591	481.890		1 m 3.281 ft	P. 100
FD-F4	Applicable pipe diameter: Outer dia. $\varnothing 6$ to $ø 26 \mathrm{~mm} ø 0.236$ to $\varnothing 1.024$ in transparent pipe (PFA (fluorine resin) or equivalently transparent pipe, wall thickness 1 mm 0.039 in		Liquid sensing, Mountable on pipe	\% 2 m 6.562 ft	P. 100
FD-F41	Applicable pipe diameter: Outer dia. $\varnothing 6$ to $\varnothing 26 \mathrm{~mm} ø 0.236$ to ø1.024 in transparent pipe PVC (vinyl chloride), fluorine resin, polycarbonate, acrylic, glass, wall thickness 1 to 3 mm 0.039 to 0.118 in				P. 100
FD-F41Y	ø4 mm ø0.157 in Protective tube: Fluorine resin, length 500 mm 19.685 in (cuttable) Liquid surface not contacted: Beam received, Liquid surface contacted: Beam interrupted		Liquid/Liquid leak sensing		P. 101
FD-F8Y	-		Liquid sensing	¢<2m6.562 ft (Note 3)	P. 101
FD-FA90	Applicable pipe diameter: Outer dia. $\varnothing 8 \mathrm{~mm} \varnothing 0.315$ in or more transparent pipe (When used with the tying bands: $\varnothing 8$ to $\varnothing 80 \mathrm{~mm} \varnothing 0.315$ to $\varnothing 3.150$ in) [PFA (fluorine resin), including translucent] Liquid absent: Beam received, Liquid present: Beam interrupted		Liquid/Liquid leak sensing	¢ 2 m 6.562 ft	P. 101
FD-FM2	1003.937	41016.142	M6		P. 101

Notes: 1) The standard sensing objects of the sensing ranges vary depending on the fibers.
2) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
3) The allowable cutting range is $1,000 \mathrm{~mm} 39.370 \mathrm{in}$ from the end that the amplifier inserted.

LIST OF FIBERS

Reflective type

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1) (Note 2)		Type		Fiber cable length $\%$: Free-cut	Dimensions	
	Standard type FX-101■	Long sensing range type FX-102ם					
FD-FM2S	1003.937	34513.583	M6, Sleeve		¢ 2 m 6.562 ft	P. 101	
FD-FM2S4	1003.937	34513.583			P. 101		
FD-G4	501.969	1204.724	M4, High precision			P. 101	
FD-G6	501.969	1204.724	M3, High precision			P. 102	
FD-G6X	451.772	1606.299	Tough flexible			\% $\times 1 \mathrm{~lm} 3.281 \mathrm{ft}$ (Note 3)	P. 102
FD-G40	501.969	1204.724	Metal-free		¢ $\times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 101	
FD-G60	1003.937	41016.142			P. 102		
FD-H13-FM2	1003.937	28011.024	Heat-resistant, $130{ }^{\circ} \mathrm{C} 266{ }^{\circ} \mathrm{F}$			P. 102	
FD-H18-L31	0 to 100.000 to 0.394	0 to 250.000 to 0.984	Heat-resistant, $180^{\circ} \mathrm{C} 356{ }^{\circ} \mathrm{F}$			P. 102	
FD-H20-21	903.543	28011.024	Heat-resistant, $200^{\circ} \mathrm{C} 392^{\circ} \mathrm{F}$	M4		1 m 3.281 ft	P. 102
FD-H20-M1	1204.724	30011.811		M6	P. 102		
FD-H25-L43	4 to 160.157 to 0.630	4 to 230.157 to 0.906	Heat-resistant, Convergent reflective		3 m 9.843 ft	P. 103	
FD-H25-L45	7 to 350.276 to 1.378	7 to 380.276 to 1.496			P. 103		
FD-H30-KZ1V-S (Note 4)	25 to 800.984 to 3.150	10 to 2200.394 to 8.661	Vacuum-resistant, Heat-resistant			1 m 3.281 ft	P. 103
FD-H30-L32	2 to 90.079 to 0.354	0 to 170.000 to 0.669	Heat-resistant, $300{ }^{\circ} \mathrm{C} 572{ }^{\circ} \mathrm{F}$		2 m 6.562 ft	P. 103	
FD-H30-L32V-S (Note 4)	2.5 to 6.50 .098 to 0.256	0 to 110.000 to 0.433	Vacuum-resistant, Convergent reflective		3 m 9.843 ft	P. 103	
FD-H35-20S	853.346	2007.874	M4, Sleeve Heat-resistant, $350{ }^{\circ} \mathrm{C} 662{ }^{\circ} \mathrm{F}$		1 m 3.281 ft	P. 104	
FD-H35-M2	752.953	28011.024			2 m 6.562 ft	P. 104	
FD-H35-M2S6	752.953	28011.024		Sleeve		P. 104	
FD-HF40Y	ø 4 mm ø0. 157 in Protective tube: Fluorine resin, length 500 mm 19.685 in (cuttable) Liquid surface not contacted: Beam received, Liquid surface contacted: Beam interrupted		Liquid/Liquid leak sensing		${ }_{<} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 104	
FD-L4	5 to 80.197 to 0.315 (Convergent point 60.236)	1 to 170.039 to 0.669 (Convergent point 60.236)	Convergent reflective			P. 104	
FD-L41	3 to 140.118 to 0.551 (Convergent point 80.315)	1.5 to 160.059 to 0.630 (Convergent point 80.315)			P. 104		
FD-L43	0 to 190.000 to 0.748	0 to 250.000 to 0.984			P. 104		
FD-L44	0 to 60.000 to 0.236	0 to 80.000 to 0.315			P. 104		
FD-L44S	0 to 4.50 .000 to 0.177	0 to 5.50 .000 to 0.217			P. 104		
FD-L45	0 to 400.000 to 1.575	0 to 500.000 to 1.969			$\mathcal{\delta} \times 3 \mathrm{~m} 9.843 \mathrm{ft}$	P. 104	
FD-L45A	-	10 to 330.394 to 1.299 (Note 5)			P. 105		
FD-L46	16 to 300.630 to 1.181	12 to 500.472 to 1.969			\% 4 m 13.124 ft	P. 105	
FD-L47	281.102	301.181			\% 3 m 9.843 ft	P. 105	
FD-NFM2	351.378	1003.937	M			¢ 2 m 6.562 ft	P. 105
FD-NFM2S	351.378	1003.937	M4, Sleeve		P. 105		
FD-NFM2S4	351.378	1003.937			P. 105		
FD-P2	250.984	652.559	$\varnothing 1.5 \mathrm{~mm} ø 0.05$	n, Flexible	1 m 3.281 ft	P. 105	
FD-P40	80.315	301.181	M3, Flexible$\varnothing 3 \mathrm{~mm} \varnothing 0.118$ in, Flexible		¢ 2 m 6.562 ft	P. 105	
FD-P50	451.772	1505.906			P. 105		
FD-P60	451.772	1505.906	M4, FI			P. 105	
FD-P80	903.543	2007.874	M6, Fl			P. 105	
FD-P81X	702.756	2208.661	M6, Toug	exible		1 m 3.281 ft	P. 106
FD-R80	702.756	1807.087	M6, E		$\%^{\circ} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 106	
FD-S30	451.772	1556.102	Super quality, $\varnothing 3$ Flex	$\text { m ø0. } 118 \text { in, }$	2 m 6.562 ft	P. 106	
FD-S31	351.378	1405.512	$ø 3 \mathrm{~mm} ø 0$ Flex	$18 \text { in, }$	¢ 2 m 6.562 ft	P. 106	

Notes: 1) The standard sensing objects of the sensing ranges vary depending on the fibers.
2) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
3) The allowable cutting range is 700 mm 27.559 in from the end that the amplifier inserted.
4) Sold as a set comprising vacuum type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8).
5) The sensing range is changed due to tilt of senseing object.

LIST OF FIBERS

Reflective type

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1) (Note 2)		Type	Fiber cable length \%<: Free-cut	Dimensions
	Standard type FX-101■	Long sensing range type FX-102ם			
FD-S80	1003.937	34513.583	$ø 3 \mathrm{~mm} ø 0.118$ in	\% 2 m 6.562 ft	P. 106
FD-SFM2SV2	301.181	903.543	Side-view		P. 106
FD-SNFM2	351.378	1003.937	$ø 2.5 \mathrm{~mm} ø 0.098$ in		P. 106
FD-T40	351.378	1003.937	M3		P. 106
FD-T80	1104.331	34513.583	M4		P. 106
FD-V41	250.984	702.756	Side-view		P. 106
FD-W8	803.150	2309.055	M6, Sharp bending		P. 107
FD-W44	150.591	401.575	M4, Sharp bending		P. 107
FD-WG4	281.102	752.953	M4, High precision		P. 107
FD-WKZ1	20 to 1800.787 to 7.087	20 to 4800.787 to 18.898	Long sensing range, Rectangular		P. 107
FD-WL41	7 to 120.276 to 0.472 (Convergent point 80.315)	6 to 13.50 .236 to 0.531 (Convergent point 80.315)	Convergent reflective		P. 107
FD-WL48	1 to 4.50 .039 to 0.177	0.5 to 6.50 .020 to 0.256		\% 1 m 3.281ft	P. 107
FD-WS8	803.150	2309.055	$ø 3 \mathrm{~mm} ø 0.118 \mathrm{in}$, Sharp bending	${ }_{8} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 107
FD-WSG4	281.102	752.953	$ø 3 \mathrm{~mm} ø 0.118$ in, High precision		P. 107
FD-WT4	150.591	401.575	M3, Sharp bending		P. 107
FD-WT8	803.150	2309.055	M4, Sharp bending		P. 107
FD-WV42	60.236	200.787	Side-view, Sharp bending		P. 108
FD-WZ4	2 to 200.079 to 0.787	1 to 700.039 to 2.756	Rectangular, Compact Sharp bending	\% 1 m 3.281ft	P. 108
FD-WZ4HB	2 to 200.079 to 0.787	1 to 700.039 to 2.756			P. 108
FD-WZ7	1 to 550.039 to 2.165	1606.299		\% 2 m 6.562 ft	P. 108
FD-WZ7HB	1 to 600.039 to 2.362	0.5 to 1800.020 to 7.087			P. 108

Notes: 1) The standard sensing objects of the sensing ranges vary depending on the fibers
2) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.

Sensing ranges (mm in) when using in combination with the FR-WKZ11 reflector (optional)

Reflector Amplifier	FX-101ם	FX-102
FR-WKZ11 + RF-210	100 to 7003.937 to 27.559	100 to $1,1003.937$ to 43.307
FR-WKZ11 + RF-220	100 to $1,3003.937$ to 51.181	100 to $2,6003.937$ to 102.362
FR-WKZ11 + RF-230	100 to $2,0003.937$ to 78.740	100 to $4,0003.937$ to 157.480

$\begin{aligned} & \text { FIBER } \\ & \text { SENSORS } \end{aligned}$
$\begin{aligned} & \text { LASER } \\ & \text { SENSORS } \end{aligned}$
PHOTOELECTRIC SENSORS
MICRO PHOTOELECTRIC SENSORS
$\begin{aligned} & \text { AREA } \\ & \text { SENSORS } \end{aligned}$
$\begin{aligned} & \text { LIGHT } \\ & \text { CURTAINS } \end{aligned}$
$\begin{aligned} & \text { PRESSURE/ } \\ & \text { FLOW } \\ & \text { SENSORSS } \end{aligned}$
$\begin{aligned} & \text { INDUCTIVE } \\ & \text { PROXIMITY } \\ & \text { SENSORS } \end{aligned}$
PARTICULAR USE SENSORS
SENSOR OPTIONS
$\begin{aligned} & \text { SIMPLE } \\ & \text { WRE-SAUNG } \\ & \text { UNTSS } \end{aligned}$
$\begin{aligned} & \text { WIRE-SAVING } \\ & \text { SYSTEMS } \end{aligned}$
$\begin{aligned} & \text { MEASURE- } \\ & \text { MENT } \\ & \text { SENSORS } \end{aligned}$
STATIC CONTROL DEVICES
ENDOSCOPE
LASER MARKERS
$\begin{aligned} & \text { PLC/ } \\ & \text { TERMNALS } \end{aligned}$
HUMAN MACHINE NTERFACES
$\begin{aligned} & \text { ENERQG } \\ & \text { CONSUMPTION } \\ & \text { VISAALZTAON } \\ & \text { COMPONENTS } \end{aligned}$
FA COMPONENTS
MACHINE VISION SYSTEMS
$\begin{aligned} & \text { UV } \\ & \text { CURING } \\ & \text { SYSTEMS } \end{aligned}$

Selection Guide
Fibers
Amplifiers
FX-500
FX-100
FX-300
FX-410
FX-311
FX-301-F7/
FX-301-F

FIBER OPTIONS

Lens (For thru-beam type fiber)

Designation		Model No.	Description				
					Sensing range (mm) [Lens on both sides]	
					Fiber Amplifier	FX-101■	FX-102■
					FT-B8	2,200 86.614	3,500 137.795 (Note 2)
					FT-FM2, FT-T80	3,000 118.110	3,500 137.795 (Note 2)
				Increases the sensing	FT-R80	1,900 74.803	3,500 137.795 (Note 2)
			∞	range by 5 times or more.	FT-W8	3,000 118.110	3,500 137.795 (Note 2)
	lens	FX-LE1	\rightarrow	- Ambient temperature:	FT-P80, FT-P60	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
	(Note 1)		\%	-60 to $+350{ }^{\circ} \mathrm{C}$	FT-P81X	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
				-76 to +662 F (Note 4)	FT-H35-M2	2,000 78.740	3,500 137.795 (Note 2)
					FT-H20W-M1	1,300 51.181	1,600 62.992 (Note 2)
					FT-H20-M1	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
					FT-H2O-J2O-S, FT-H2O-J30-S, FT-H20-J50-S	1,000 39.370	3,500 137.795 (Note 2)
	Superexpansion lens (Note 1)	FX-LE2			Sensing range (mm in) [Lens on both sides]		
					Fiber Amplifier	FX-101■	FX-102■
				Tremendously increases the sensing range with large diameter lenses.	$\begin{aligned} & \text { FT-B8, FT-FM2, } \\ & \text { FT-R80, FT-W8, } \\ & \text { FT-P80, FT-P60 } \end{aligned}$	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
					FT-P81X	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
				$-60 \text { to }+350^{\circ} \mathrm{C}$	FT-H35-M2	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
				$-76 \text { to }+662{ }^{\circ} \mathrm{F}$	FT-H20W-M1, FT-H20-M1	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
					FT-H13-FM2	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
					FT-H2O-J2O-S, FT-H2O-J3O-S, FT-H20-J50-S	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
	Side-view lens	FX-SV1			Sensing range (mm in) [Lens on both sides]		
					Fiber Amplifier	FX-101■	FX-102■
					FT-B8	53020.866	1,450 57.087
					FT-FM2, FT-T80	55021.654	1,700 66.929
				Beam axis is bent by 90°	FT-W8	45017.717	1,300 51.181
					FT-P80	42016.535	1,400 55.118
				- Ambient temperature:	FT-P60	30011.811	85033.465
				-76 to $+572{ }^{\circ} \mathrm{F}$	FT-P81X	55021.654	1,700 66.929
				(Note 4)	FT-H35-M2	28011.024	80031.496
					FT-H20W-M1	1405.512	40015.748
					FT-H20-M1	28011.024	84033.071
					FT-H2O-J2O-S, FT-H2O-J3O-S, FT-H20-J50-S	1505.906	41016.142
	Expansion lens for vacuumresistant fiber (Note 1)	FV-LE1			Sensing range (mm in) [Lens on both sides] (Note 3)		
					Fiber Amplifier	FX-101■	FX-102■
					FT-H30-M1V-S	45017.717	1,600 62.992
	Side-view lens for vacuumresistant fiber	FV-SV2		Beam axis is bent by 90°. - Ambient temperature: $\begin{aligned} & -60 \text { to }+300^{\circ} \mathrm{C}-76 \text { to }+572{ }^{\circ} \mathrm{F} \\ & \text { (Note 4) } \end{aligned}$	Sensing range (mm in) [Lens on both sides] (Note 3)		
					Fiber Amplifier	FX-101■	FX-102■
					FT-H30-M1V-S	45017.717	1,600 62.992

Notes: 1) Be careful when installing the thru-beam type fiber equipped with the expansion lens, as the beam envelope becomes narrow and alignment is difficult. Especially when installing a fiber with many cores (sharp bending fibers and heat-resistant glass fiber), please be sure to use it only after you have adjusted it sufficiently.
2) The fiber cable length practically limits the sensing range to $3,500 \mathrm{~mm} 137.795$ in long (FT-H20W-M1, FT-P81X and FT-H20-M1: 1,600 mm 62.992 in).
3) The fiber cable length for the FT-H30-M1V-S is 1 m 3.281 ft . The sensing ranges in FX-102ם (long sensing range type) take into account the length of the FT-J8 atmospheric side fiber.
4) For details on the ambient temperatures for the fibers which being combined, refer to p.76~.

FIBER OPTIONS

Lens (For reflective type fiber)

Notes: 1) The sensing ranges are the values when used in combination with FX-101■ (standard type). Please contact our office for details on sensing ranges for other types of amplifier.
2) For details on the ambient temperatures for the fibers which being combined, refer to p.76~.

FIBER SENSORS
$\begin{aligned} & \text { LASER } \\ & \text { SENSORS } \end{aligned}$
PHOTO- ELECTRIC SENSORS
$\begin{aligned} & \hline \text { MICRO } \\ & \text { PHOTO- } \\ & \text { ELECTRII } \\ & \text { SENSORS } \\ & \hline \end{aligned}$
AREA SENSORS
LIGHT CURTAINS
PRESSURE / FLOW SENSORS
INDUCTIVE PROXIMITY SENSORS
PARTICULAR USE SENSORS
SENSOR OPTIONS
SIMPLE WIRE-SAVING UNTS
WIRE-SAVING SYSTEMS
MEASURE MENT SENSORS
STATIC CONTROL DEVICES
ENDOSCOPE
LASER MARKERS
$\begin{aligned} & \text { PLCI } \\ & \text { TERMNALS } \end{aligned}$
HUMAN MACHINE INTERFACES
ENERGY CONSUPTION VISUALZATNON COMPONENS
FA COMPONENTS
MACHINE VISION SYSTEMS
UV CURING SYSTEMS
Selection Guide
Fibers
Amplifiers
FX-500
FX-100
FX-300
FX-410
FX-311
$\begin{aligned} & \text { FX-301-F7/ } \\ & \text { FX-301-F } \\ & \hline \end{aligned}$

SPECIFICATIONS

Ite	Type		Standard type		Long sensing range type	
				Cable set		Cable set
		NPN output	FX-101(-Z) (Note 5)	FX-101-CC2	FX-102(-Z) (Note 5)	FX-102-CC2
	交	PNP output	FX-101P(-Z) (Note 5)	FX-101P-CC2	FX-102P(-Z) (Note 5)	FX-102P-CC2
Supply voltage			12 to 24 V DC $\pm 10 \%$ Ripple P-P 10% or less			
Power consumption			Normal operation: 720 mW or less (Current consumption 30 mA or less at 24 V supply voltage) ECO mode: 600 mW or less (Current consumption 25 mA or less at 24 V supply voltage)			
Output			<NPN output type> NPN open-collector transistor - Maximum sink current: 100 mA - Applied voltage: 30 V DC or less (between output and 0 V) - Residual voltage: 1.5 V or less (at 100 mA sink current)		<PNP output type> PNP open-collector transistor - Maximum source current: 100 mA - Applied voltage: 30 V DC or less (between output and +V) - Residual voltage: 1.5 V or less (at 100 mA source current)	
Output operation			Selectable either Light-ON or Dark-ON, at SET mode			
Short-circuit protection			Incorporated			
External input			<NPN output type> NPN non-contact input - Signal condition High: +8 V to +V DC or Open Low: 0 to +2 V DC (Source current 0.5 mA or less) - Input impedance: $10 \mathrm{k} \Omega$ approx.		<PNP output type> PNP non-contact input - Signal condition High: +4 V to +V DC (Sink current 0.5 to 3 mA) Low: 0 to +0.6 V DC or Open - Input impedance: $10 \mathrm{k} \Omega$ approx.	
Response time			Emission frequency 0: 250μ s or less (factory default setting) Emission frequency 1: $450 \mu \mathrm{~s}$ or less Emission frequency 2: 500μ s or less Emission frequency 3: $600 \mu \mathrm{~s}$ or less		Emission frequency 1:2.5 ms or less (factory default setting) Emission frequency 2: 2.8 ms or less Emission frequency 3: 3.2 ms or less Emission frequency 4: 5.0 ms or less	
Sensitivity setting			2-point teaching / Limit teaching / Full-auto teaching			
Operation indicator			Orange LED (lights up when the output is ON)			
Digital display			4 digits (green) +4 digits (red) LCD display			
Fine sensitivity adjustment function			Incorporated			
Timer function			ON-delay / OFF-delay timer, switchable either effective or ineffective [Timer period: $1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, 40 \mathrm{~ms}, 50 \mathrm{~ms}, 100 \mathrm{~ms}, 500 \mathrm{~ms}, 1,000 \mathrm{~ms}$]			
Attenuation function			3-level + Auto setting			
Interference prevention function			Incorporated Emission frequency selection method (Note 2) (Functions at emission frequency 1, 2 or 3)		Incorporated Emission frequency selection method (Note 2) (Functions at emission frequency 1, 2, 3 or 4)	
	Ambient te	mperature	-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ (If 4 to 7 units are mounted close together: -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$, if 8 to 16 units are mounted close together: -10 to $+45^{\circ} \mathrm{C}+14$ to $+113^{\circ} \mathrm{F}$) (No dew condensation or icing allowed), Storage: -20 to $+70^{\circ} \mathrm{C}-4$ to $+158^{\circ} \mathrm{F}$			
	Ambient h	umidity	35 to 85 \% RH, Storage: 35 to 85 \% RH			
	Ambient ill	uminance	Incandescent light: $3,000 \mathrm{~lx}$ at the light-receiving face			
	Voltage wit	thstandability	$1,000 \mathrm{~V}$ AC for one min. between all supply terminals connected together and enclosure (Note 3)			
	Insulation	resistance	$20 \mathrm{M} \Omega$, or more, with 250 V DC megger between all supply terminals connected together and enclosure (Note 3)			
	Vibration r	esistance	10 to 150 Hz frequency, 0.75 mm 0.030 in amplitude in X, Y and Z directions for two hours each			
	Shock res	stance	$98 \mathrm{~m} / \mathrm{s}^{2}$ acceleration (10 G approx.) in X, Y and Z directions for five times each			
Emitting element (modulated)			Red LED (Peak emission wavelength: 632 nm 0.025 mil)			
Material			Enclosure: Polycarbonate, Key switch: Polycarbonate, Fiber lock lever: PBT			
Connecting method			Connector (Note 4)			
Cable length			Total length up to 100 m 328.084 ft is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable.			
Weight			Net weight: 15 g approx. Gross weight: 35 g approx.	Net weight: 15 g approx. Gross weight: 75 g approx.	Net weight: 15 g approx. Gross weight: 35 g approx.	Net weight: 15 g approx. Gross weight: 75 g approx.
Accessory			-	CN-14A-C2 (Connector attached cable, 2 m 6.562 t long): 1pc.	\square	CN-14A-C2 (Connector attached cable, 2 m 6.562 ft long): 1 pc .

Notes: 1) Where measurement conditions have not been specified precisely, the conditions used were an ambient temperature of $+23{ }^{\circ} \mathrm{C}+73.4^{\circ} \mathrm{F}$.
2) When using the interference prevention function, set the emission frequencies for the amplifiers to be covered by the interference prevention function to different frequency values.
However, the interference prevention function does not operate at emission frequency 0 (factory default setting) for the FX-101(P)(-Z) / FX-101(P)-CC2.
3) The voltage withstandability and the insulation resistance values given in the above table are for the amplifier only.
4) Connector attached cable CN-14A-C2 is not attached to the models that have no "-CC2" at the end of the model Nos.

Make sure to use the optional connector attached cable $\mathbf{C N}-14 \mathrm{~A}(-\mathrm{R})-\mathrm{C} \square$ or the connector $\mathbf{C N}-14 \mathrm{~A}$, or a connector manufactured by J.S.T. Mfg., Ltd. (contact: SPHD-001T-P0.5, housing: PAP-04V-S).
5) Model Nos. having the suffix "-Z" are M8 plug-in connector type. Make sure to use the optional M8 attached connector cable CN-24A-C \square.

I/O CIRCUIT AND WIRING DIAGRAMS

SENSING CHARACTERISTICS (TYPICAL)
Contact our office for sensing characteristics that are not contained here.

FT-NFM2 FT-NFM2S
FT-NFM2S4 FT-SNFM2

Parallel deviation

FD-B8 Reflective type
Sensing field

FX-500
FX-100
FX-300
FX-410
FX-311
FX-301.F7/ FX-301-F

FD.NFM2 FD.NFM2S FD.NFM2S4 Refledive
FD.SNFM2 FD.T40 type
Sensing field

- Vertical direction

FT-P81X Thru-beam type

Sensing field

FT-B8 Thru-beam type

Parallel deviation

FT-W4 FT-WS4 Thru-beam type

Sensing field

FD-W8 FD-WS8 FD-WT8 Reflective type

Sensing field

FT.FM2 FT-FM2S FT-FM2S4 Thru-beam FT-SFM2 FT-T80 type

Parallel deviation

FT-W8 FT-WS8 Thru-beam type

Parallel deviation

Sensing field

FD-WG4 FD-WSG4 Rellecive type

Sensing field

Refer to General precautions, and to the "Operation Guide" on our website for details pertaining to operating instructions for the amplifier.

- Never use this product as a sensing device
for personnel protection.
- In case of using sensing devices for
personnel protection, use products which
meet laws and standards, such as OSHA,
ANSI or IEC etc., for personnel protection
applicable in each region or country.

Using in combination with the FX-300 / FX-410 series

- The FX-100 series does not use the horizontal connectors that are used with the FX-300 / FX-410 series. Please note that horizontal connection cannot be performed using a connector attached cable. In addition, the optical communication function is not equipped on the FX-100 series, so it is unable to perform interference prevention for use with the FX-300 / FX-410 series. If using the FX-100 series together with the FX-300 / FX-410 series side-by-side, please set the same models together in groups.

Mounting

<When using a DIN rail>

How to mount the amplifier

(1) Fit the rear part of the mounting section of the amplifier on a 35 mm 1.378 in width DIN rail.
(2) Press down the rear part of the mounting section of the unit on the 35 mm 1.378 in width DIN rail and fit the front part of the mounting
 section to the DIN rail.

How to remove the amplifier

(1) Push the amplifier forward.
(2) Lift up the front part of the amplifier to remove it.

Note: Take care that if the front part is lifted without pushing the amplifier forward, the hook on the rear portion of the mounting section is likely to break.

<When using screws with washers>

- Use M3 screws with washers for mounting. The tightening torque should be $0.5 \mathrm{~N} \cdot \mathrm{~m}$ or less.

Wiring

- Make sure that the power supply is OFF while adding or removing the amplifiers.
- Note that if a voltage exceeding the reted range is applied, or if an AC power supply is directly connected, the product may get burnt or damaged.
- Note that short-circuit of the load or wrong wiring may burn or damage the product.
- Do not run the wires together with high-voltage lines or power lines, or put them in the same raceway. This can cause malfunction due to induction.
- Verify that the supply voltage variation is within the rating.
- If power is supplied from a commercial switching regulator, ensure that the frame ground (F.G.) terminal of the power supply is connected to an actual ground.
- In case noise generating equipment (switching regulator, inverter motor, etc.) is used in the vicinity of this product, connect the frame ground (F.G.) terminal of the equipment to an actual ground.
- Make sure to use the quick-connection cable (optional) for the connection of the controller.
Extension up to total 100 m 328.084 ft is possible with 0.3 mm^{2} or more, cable. However, in order to reduce noise, make the wiring as short as possible.

Part description

Setting mode

- Setting mode appears after the MODE key is pressed for 2 sec. in RUN mode.

Setting item	Factory setting	Description
Teaching mode	thin	Threshold value can be set in 2-point teaching, limit teaching, or full-auto teaching.
Output operation setting	$\begin{aligned} & L_{-d}^{d} d \text {-an } \\ & {[\text { Dark-ON] }} \end{aligned}$	Light-ON or Dark-ON can be set.
Timer operation setting	dELY non [Without timer]	Without timer, ON delay timer, or OFF delay timer can be set.
Timer setting	and \quad in [ON-delay timer: 10 ms$]$ ofd \quad it [OFF-delay timer: 10 ms]	In case of setting ON-delay timer or OFF-delay timer in the timer operation setting mode, timer can be set. When timer is not set, this mode is not displayed.
Emission amount setting	PGEL IMII Level 3	Setting for reduced intensity of emission amount is possible when the incident light intensity is saturated.
Emission frequency setting		In case of using the fiber heads in parallel, interference can be prevented by setting different emission frequency. However, when emission frequency 0 is set, interference cannot be prevented. Response time corresponds to emission frequency.

PRECAUTIONS FOR PROPER USE

PRO mode

- PRO mode appears after the MODE key is pressed for 4
sec. in RUN mode.

Setting item	Factory setting	Description
Shift setting		Shift amount can be selected from 0 to 80% in the limit teaching. Select 0% when it is desired to set the present incident light intensity as a threshold value.
External input setting		External input can be selected from emission halt, limit teaching [+], limit teaching [-], full-auto teaching, ECO (Note 1), 2-point teaching or emission amount test. When setting the incident light intensity test " EE 5 L ", output turns ON / OFF every 100 ms when the rate of incident light intensity and threshold value is less than half of the set shift amount (for example, when the rate of incident light intensity and threshold value is within $\pm 10 \%$ for 20% of shift amount) at external input.
Threshold value-storing setting mode (Note 2)	$\frac{6-4 F r}{\text { b-F }}$	Threshold value set at the limit teaching, full-auto teaching or 2-point teaching by external input is stored. When selecting Auto in the emission amount setting mode, the set emission amount level is also stored.
Threshold value follow-up cycle setting (Note 3)	$\begin{array}{\|ll\|} \hline \text { FHEL } & \text { ofF } \\ \hline O F F] \end{array}$	When incident light intensity exceeds threshold value, this mode can change the threshold value with each set cycle depending on variations of the incident light intensity. The follow-up shift amount is same as the one set in the shift setting mode. However, the threshold value is not stored.
GETA function setting (Note 4, 5)		Variations can be reduced by correcting the present incident light intensity in each amplifier to a target value. Target value to offset incident light intensity can be selected from 0 to 2,000 by 100 unit each. For example, if the target value is set to 2,000 when the incident light intensity is 1,500 , the incident light intensity becomes 2,000.
$\begin{aligned} & \text { ECO } \\ & \text { setting } \end{aligned}$	Era 日f: [OFF]	It is possible to light up / turn off the digital display. When ECO setting mode is ON, the display turns off in 20 sec. approx. in RUN mode. To light up the display again, press any key for 2 sec . or more.
Digital display inversion setting	Huma	Digital display can be inverted.
Threshold value margin setting		Margin for threshold value to the present incident light intensity can be checked. When there is no margin, it is possible to make the digital display blink. off: Set to "OFF": does not function. ErEn: Green blinks. red : Red blinks. 연: Red and green blink. in $-t$: When conducting limit teaching or 2-point teaching by external input, in case the rate of reference incident light intensity and threshold value after teaching is 200% or more, or in case it is less than half of the shift amount, output turns ON / OFF every 100 ms . (Note 6)
Setting copy		The settings of the master side amplifier can be copied to the slave side amplifier. For details, refer to "Setting copy function".
Reset		Returns to default settings (factory settings.)

Notes: 1) When ECO is selected at the external input setting mode, key operation on the main body is invalid during external input.
2) This mode is not indicated unless any of "LtcP", "Ltc-" "Ruto" or " $\mathfrak{2}-\mathrm{pt}$ " is set at the external input setting mode.
3) If the incident light intensity becomes " 300 " or less, the follow-up operation stops. In that condition, threshold value [digital display (green)] blinks. This function can be used when thru-beam type or retroreflective type fiber is applied to this product. If reflective type fiber is applied, the function cannot be used depending on use conditions.
4) If MODE key is pressed in RUN mode when GETA function is used, the incident light intensity before setting GETA function is displayed on the red digital display for 2 sec . approx.
5) When GETA function is used in saturation of incident light intensity (4,000 or more,) "HRrd" is indicated on the red digital display. Correction value is up to 4,000 .
6) This mode does not operate unless any of " $\llcorner E \subset P$ ", " $L t c$ " " or " $𠃌^{3}-P L$ " is set at the external input setting mode.

Refer to General precautions, and to the "Operation Guide" on our website for details pertaining to operating instructions for the amplifier.

Setting copy function

- This can copy the settings of the master side amplifier to the slave side amplifier.
Refer to the copy unit SC-SU1 for details.
- Be sure to use the setting copy function between the identical models (Between FX-101■ models or FX-102 models).
This function cannot be used between different models.
- Only one sensor can be connected on slave side with a master side sensor for the setting copy function.
- Threshold value, output operation setting, timer operation setting, timer setting, light-emitting amount setting, shift setting, external input setting, threshold value margin setting, ECO setting, digital display inversion setting, and threshold value margin setting can be copied.

<Setting procedures>

(1) Set the setting copy mode of the master side amplifier to "Copy sending ON", and press the MODE key so that
 sensor is in copy ready state. For the setting method, refer to "Operation guide".
(2) Turn off the master side amplifier.
(3) Connect the master side amplifier with the slave side amplifier as shown below.

(4) Turn on the master side amplifier and the slave side amplifier at the same time. (Note)
(5) "[alu" is shown on the green digital display of the master side amplifier and 4-digit code is shown on the red digital display of it, then the copying starts. During copy communication, " 5 [F " " is shown on the green digital display of the slave side amplifier, and the ongoing copy communication indicator (" \quad " \rightarrow " $\quad \mid 1 " \rightarrow$ " $: 1 " \rightarrow$
 the red digital display.
(6) When the copying is completed, "Soud" is shown on the green digital display of the slave side amplifier, while the 4-digit code (the same code as the master side amplifier) is shown on the red digital display of it.
(7) Turn off the power of the master side amplifier and the slave side amplifier and disconnect the wire.

* If copying the settings to another amplifier repeatedly, follow the steps (3) to (7).

Note: Take care that if the power is not turned on at the same time, the setting contents may not be copied.
<To cancel the setting copy mode of the master side amplifier>
(1) While the slave side amplifier is disconnected, turn on the power of the master side amplifier.
(2) Press the MODE key for 2 sec . approx.

PRECAUTIONS FOR PROPER USE

Refer to General precautions，and to the＂Operation Guide＂on our website for details pertaining to operating instructions for the amplifier．

Others

－Do not use during the initial transient time（ 0.5 sec ．）after the power supply is switched on．
－Take care that the product is not directly exposed to fluorescent lamp from a rapid－starter lamp，a high frequency lighting device or sunlight etc．，as it may affect the sensing performance．
－This product is suitable for indoor use only．
－Avoid dust，dirt，and steam．
－Take care that the product does not come in contact with oil，grease，organic solvents，such as thinner，etc．，strong acid or alkaline．
－This product cannot be used in an environment containing inflammable or explosive gases．
－Never disassemble or modify this product．
－EEPROM is adopted to this product．It is not possible to conduct teaching 100 thousand times or more，because of the EEPROM＇s lifetime．

Quick setting function

－The quick setting function makes it possible to set the content of the SET Mode（output operation，timer operation，amount of light emitted，and frequency of light emitted）simply by selecting a setting number．
－While in the RUN Mode，pressing and holding both the ON key（回）and OFF key（回）simultaneously for 2 seconds will switch to the quick setting function．
＜Table of quick setting numbers＞

No．	Output operation	Timer	Emission amount setting
－ 0^{-10}	D－ON	non	Level 3 （OFF）
－8：	D－ON	non	Level 2 （ON）
－82－	D－ON	ofd 10 ms	Level 3 （OFF）
－93－	D－ON	ofd 10 ms	Level 2 （ON）
－84－	D－ON	ofd 40 ms	Level 3 （OFF）
－05－	D－ON	ofd 40 ms	Level 2 （ON）
－0．0－	D－ON	ond 10 ms	Level 3 （OFF）
－97－	D－ON	ond 10 ms	Level 2 （ON）
－88－	D－ON	ond 40 ms	Level 3 （OFF）
－99－	D－ON	ond 40 ms	Level 2 （ON）
－ 1910	L－ON	ond 40 ms	Level 2 （ON）
－：1－	L－ON	ond 40 ms	Level 3 （OFF）
－ 12 －	L－ON	ond 10 ms	Level 2 （ON）
－13－	L－ON	ond 10 ms	Level 3 （OFF）
－ 14 －	L－ON	ofd 40 ms	Level 2 （ON）
－ 15 －	L－ON	ofd 40 ms	Level 3 （OFF）
－15－	L－ON	ofd 10 ms	Level 2 （ON）
－ $17-$	L－ON	ofd 10 ms	Level 3 （OFF）
－ 190	L－ON	non	Level 2 （ON）
－19－	L－ON	non	Level 3 （OFF）

Code setting function

－The code setting function makes it possible to set the output operation，timer operation，amount of light emitted， frequency of light emitted，ECO setting，external input， and amount of shift by selecting a code of one＇s choice．
－While in the RUN Mode，pressing and holding both the ON key（ Δ ）and OFF key（回）simultaneously for 4 seconds will switch to the code setting function．
＜Code table＞

Notes：1）When the present setting is out of the code setting range，＂－＂is shown．
When＂－＂is selected，the set content of the digit is not changed．
2）The factory setting is＂Fider＂．

DIMENSIONS (Unit: mm in)
The CAD data in the dimensions can be downloaded from our website.

FX-101(P)-Z FX-102(P)-Z
Amplifier

Material: Polycarbonate

CN-14A-C2 is attached FX-101(P)-CC2 / FX-102(P)-CC2

- Length L

Model No.	Length L
CN-14A(-R)-C1	$1,00039.370$
CN-14A(-R)-C2	$2,00078.740$
CN-14A(-R)-C3	$3,000118.110$
CN-14A(-R)-C5	$5,000196.850$

