

IGBT Module

SK150MLI066T

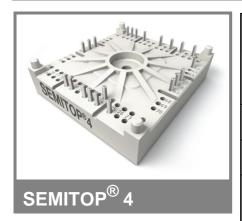
Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- · CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Multi level inverter


Remarks

- V_{isol} = 3000V AC,1s,50Hz
- Dynamic measure: DUT = IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

Absolute Maximum Ratings $T_s = 25$ °C, unless otherwise specified						
Symbol	Conditions			Values	Units	
IGBT	•					
V_{CES}	T _j = 25 °C			600	V	
I _C	T _j = 175 °C	T _s = 25 °C		151	Α	
		$T_s = 70 ^{\circ}C$		120	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			300	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		6	μs	
Inverse I	Diode					
I_{F}	T _j = 175 °C	$T_s = 25 ^{\circ}C$		115	Α	
		$T_s = 70 ^{\circ}C$		90	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			300	Α	
Freewhe	eling Diode					
I_{F}	T _j = 175 °C	T_s = 25 °C		115	Α	
		$T_s = 70 ^{\circ}C$		90	Α	
I _{FRM}				300	Α	
Module						
$I_{t(RMS)}$					Α	
T_{vj}				-40 + 175	°C	
T _{stg}				-40 + 125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics $T_s = T_s$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,0076	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA	
V_{CE0}		T _j = 25 °C		0,8	1,1	V	
		T _j = 150 °C		0,7	1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		4	5	mΩ	
		$T_{j} = 150^{\circ}C$		6,5	7	mΩ	
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V			1,45	1,85	V	
		$T_j = 150^{\circ}C_{chiplev}$		1,65	2,05	V	
C _{ies}				9,4		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,6		nF	
C _{res}				0,29		nF	
Q_G	V _{GE} =-7V+15V			1350		nC	
R_{Gint}	T _j = 150 °C			2		Ω	
t _{d(on)}				100		ns	
l t _r	$R_{Gon} = 4 \Omega$	V _{CC} = 300V		54		ns	
E _{on}	di/dt = 4100 A/μs	I _C = 150A		2,7		mJ	
t _{d(off)}	$R_{Goff} = 4 \Omega$	T _j = 150 °C		450		ns	
t _f	di/dt = 4100 A/μs	V _{GE} =-7/+15V		65		ns	
E _{off}				5,9		mJ	
$R_{th(j-s)}$	per IGBT			0,55		K/W	

IGBT Module

SK150MLI066T

Preliminary Data

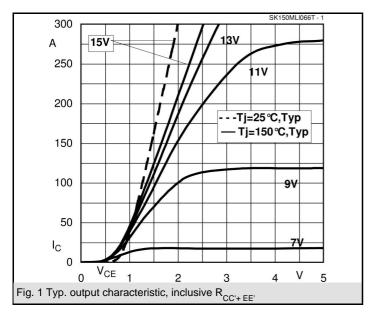
Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

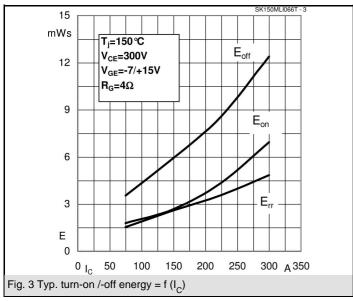
Typical Applications*

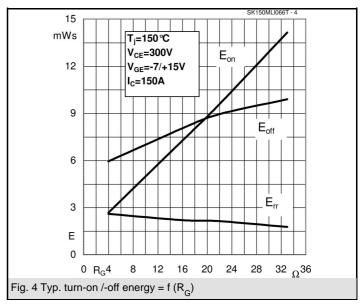
Multi level inverter

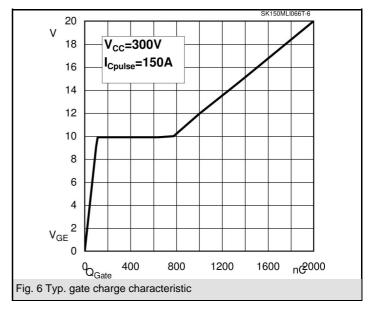
Remarks

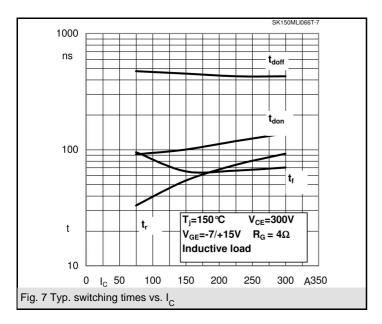

- V_{isol} = 3000V AC,1s,50Hz
- Dynamic measure: DUT = IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

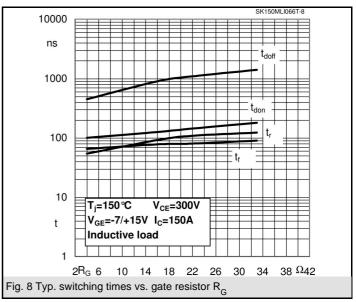
Characteristics								
Symbol	Conditions	I	min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V			1,5	1,7	V		
		$T_j = 150 ^{\circ}C_{chiplev.}$ $T_j = 25 ^{\circ}C$		1,5	1,7	V		
V _{F0}		T _j = 25 °C		1	1,1	V		
		T _j = 150 °C		0,9	1	V		
r _F		T _j = 25 °C		3,5	4	mΩ		
		T _j = 150 °C		4	4,7	mΩ		
I _{RRM}	I _F = 150 A	T _j = 150 °C		130		Α		
Q_{rr}	di/dt = 4100 A/µs			8		μC		
E _{rr}	V _R = 300V			2,6		mJ		
$R_{th(j-s)D}$	per diode			0,72		K/W		
	eling Diode (Neutral C	Clamp Diode)				•		
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$		1,5	1,7	V		
		T _j = 150 °C _{chiplev.}		1,5	1,7	V		
V _{F0}		T _j = 25 °C		1	1,1	V		
		T _j = 150 °C		0,9	1	V		
r _F		T _j = 25 °C		3,5	4	V		
		T _j = 150 °C T _j = 150 °C		4	4,7	V		
I _{RRM}	I _F = 150 A	T _j = 150 °C		120		Α		
Q_{rr}	di/dt = 3100 A/µs			8		μC		
E _{rr}	V _R =300V			2,4		mJ		
$R_{th(j-s)FD}$	per diode			0,72		K/W		
M _s	to heat sink		2,5		2,75	Nm		
w				60		g		
Temperat	ture sensor							
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω		

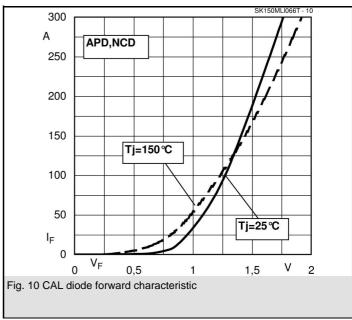

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

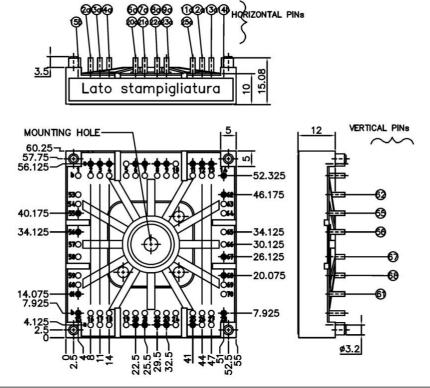

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











UL recognized file no. E 63 532

Case T 88 (Suggested hole diameter for the solder pins in the circuit board: 2mm. Suggested hole diameter for the mounting pins in the circuit board: 3,6mm)

