AIR PREPARATION

ELECTRONICALLY CONTROLLED PRESSURE REGULATING VALVE (PROPORTIONAL PRESSURE REGULATING VALVE) SERIES Girfit control

Description	Abb.	Port size	Recommended flow (I/min)*	Туре	Data Sheet No.
airfit tecno Proportional pressure valve 0-10 V		G1/8	115 (Nominal flow)	PRE-U	5.96.002E
airfit tecno Proportional pressure valve 4-20 mA			G1/8	115 (Nominal flow)	PRE-I 5.96.002E
airfit control Proportional pressure valve 0-10 V normally closed normally open		G1/4 G3/8	550 (2200*) 850 (2500*)	SRE-U-1/4 SRE-U-3/8	5.96.004E
airfit control Proportional pressure valve 4-20 mA	0.00	G1/4 G3/8	550 (2200*) 850 (2500*)	SRE-I-1/4 SRE-I-3/8	5.96.004E
airfit control Proportional pressure valve 0-20 mA		G1/4 G3/8	550 (2200*) 850 (2500*)	SRE-I-1/4 SRE-I-3/8	5.96.004E
airfit control Proportional pressure valve 0-10 V normally closed normally open		G3/8 G1/2	850 (4500*) 1900 (6000*)	CRE-U-3/8 CRE-U-1/2	5.96.005E
airfit control Proportional pressure valve 4-20 mA		G3/8 G1/2	850 (4500*) 1900 (6000*)	CRE-I-3/8 CRE-I-1/2	5.96.005E
airfit control Proportional pressure valve 0-20 mA		G3/8 G1/2	850 (4500*) 1900 (6000*)	CRE-I-3/8 CRE-I-1/2	5.96.005E

* Max. flow at $p_{_1}$ =10 bar to $p_{_2}$ = 6:3 bar, Δp = 1 bar

Characteristics to VD	I 3292		Pressures q	uoted as gaug	epressures
System			3 way prop regulator w control and electronic f	ortional pres ith PIEZO pil pneumatic a eedback.	sure ot and
Flow direction			In: Out:	from 1 to 2 from 2 to 3	
Reaction to power failure			Port 2 vent	s to 0 bar	
Mounting			Flange		
Port size			NW 2.5 G1/8	without bas with base p	e plate late
Installation			In any posi	tion	
Weight (mass)		kg	0.160 0.215	without bas with base p	e plate late
Medium and ambient temperature range	T T _{max}	°C °C	0 +50		
Storage temperature	T T _{max}	°C °C	-30 +60		
Medium			Filtered, dry, lubricated ⁽¹ or oil-free compressed air		¹ or
Filtration		μm	30; recomn	nended: 5	
Electrical protection		IP	30 to DIN E	EN 60529	
Materials Housing Internal parts Seals			Anodized aluminium, plastic Aluminium, brass, plastic NBR		astic c
Pneumatic Character	istics		1	1	
Version			0-8 bar	0-2 bar	0-200 mbai
Pressure range, inlet	p _{1 min} p _{1 max}	bar bar	1.5 10	1.5 6	1.5 2.5
Pressure range, outlet	p _{2 min} p _{2 max}	bar bar	0 ²⁾ 8	0 2	0 0.2
Nominal flow rate	Q _N	l/min	200		
Maximum flow rate 3)	Q _N	l/min	350		
Hysteresis 5)	Δp_2	%	< 0.2	< 0.2	< 0.5
Repeatability	Δp_2	%	< 0.2	< 0.2	< 0.5
Responsiveness ⁵⁾	Δp_2	%	< 0.1	< 0.1	< 0.5
Linearity (4 (5	$\Delta p_{2 \text{ max}}$	%	< 0.5	< 0.5	< 2
Own air consumption 6)		NI/min	≤ 0.6	≤ 0.5	≤ 0.4

Pressure Regulating Valve

G1/8, NW 2.5

Electronically controlled (proportional pressure regulating valve with piezo pilot)

oirfit *ÉECITU*

Versions

- Voltage controlled (Type PRE-U)
- Current controlled (Type PRE-I)
- 3 pressure ranges
- Option: actual value output
- Option: EMV-mass

Electronically controlled pressure regulating valve with actual value feed-back.

The unit is highly adaptable to prevailing operating conditions. Remote controlled.

Electrical Characteristics see page 2 ¹⁾ oil-free air is recommended.

If the system must have lubricated air, sparing lubrication (max. 30 mg/m3) is recommended.

²⁾ other pressure ranges on request.

³⁾ at $p_1=10$ bar and $p_2=6.3$ bar, $\Delta p=1$ bar. ⁴⁾ at ambient temperature 20 °C. ⁵⁾ relative to p_{2max} .

⁶⁾ at p₁ max.

Data Sheet No. 5.96.002E-1

Continuation of Characteristics		Pressures quoted as gauge pressures	
Electrical Characteris	tics, Ger	neral	
Connector			3-pin connector M8 ⁽⁷ or to DIN 43650-1 C
Electromagnetic Com	patibility	(EMC) ⁸⁾	
Resistance to interference			EN 61000-6-2
Interference emissions			EN 50 081-1
Electrical Characteris	tics for 1	ype PRI	E-U
Nominal voltage	U _N	V DC	24 ±10 %
Nominal power max.	P _N	W	0.4
Residual ripple max.		%	10
Current consumption	I _{Bmax}	mA	15
Set value input	W	V	0-10
Version 0 - 8 bar			$0 \text{ V} \rightarrow 0 \text{ bar}, 8 \text{ V} \rightarrow 8 \text{ bar}$
Version 0 - 2 bar			$0 \text{ V} \rightarrow 0 \text{ bar}, 10 \text{ V} \rightarrow 2 \text{ bar}$
Version 0 - 0.2 bar			0 V \rightarrow 0 bar, 10 V \rightarrow 0.2 bar
Input resistance	R _E	kΩ	61.5
Electrical Characteris	tics for 1	ype PRI	E-I
Power supply ⁽⁹	I _B	mA	4
Power supply ⁽⁹	W	mA	420
Max. voltage at input ¹⁰⁾	U _{wmax}	V	12.5
Version 0 - 8 bar			4 mA \rightarrow 0 bar, 20 mA \rightarrow 8 bar
Version 0 - 2 bar			4 mA \rightarrow 0 bar, 20 mA \rightarrow 2 bar
Version 0 - 0.2 bar			4 mA \rightarrow 0 bar, 20 mA \rightarrow 0.2 bar
Input resistance	R _E	Ω	≤ 550
Actual value output ¹¹⁾			
Output voltage	U _x	V	$\begin{array}{c} 0 \text{ bar} \rightarrow 1.25 \text{ V} \\ \text{p}_{2 \text{ max}} \rightarrow \ 6.25 \text{ V} \end{array}$
Output current max.	I _x max	mA	1
Internal protective resistance	R	Ω	1000

- see Order No.'s, Page 6. ⁸⁾ To comply with the specification,
- b comply with the specification, shielded connecting cables must be used
- ⁹⁾ 2-wire technology, i.e. power supply and set value via the same cable.
- ¹⁰⁾higher voltage will damage the valve.
- ¹¹⁾optional, see Order No.'s, page 6.

How it Works

The actuating element in the **tecno valve** is not a solenoid system, as in conventional proportional pressure regulating valves, but a piezo valve – an encapsulated Piezo-ceramic element based on the jet-and- baffle principle.

The piezo valve makes use of the Piezo effect: the Piezo-ceramic element bends when a voltage is applied to it.

A built-in electronic control system applies variable voltage to the element, producing variable bending and therefore variable pressure on the diaphragm in the pilot chamber. Diaphragm movement is transferred to the main valve by a plunger acting against a spring.

The pressure thus produced at the valve outlet is compared via a sensor with the preset value and if necessary corrected by the electronic control system.

Sensitivity

The smallest change in the electronic input signal which leads to a change in actual output pressure is referred to as sensitivity. This is expressed as a percentage of maximum output pressure. For the Tecno this value is < 0.1% to < 0.5% depending on the version.

Linearity

The ideal curve showing output pressure in relation to electronic signal would be a straight line. Linearity is the maximum deviation from the straight line, expressed as a percentage of maximum output pressure.

Hysteresis

The same electronic signal generates slightly different actual output pressures, depending on whether the previous signal was higher or lower. This difference, known as hysteresis, is caused by friction and temporary deformation of elastic components.

The hysteresis of the electronically operated pressure regulating valve **AIRFIT tecno** from HOERBIGER is between < 0.2 % and < 0.5 % of the output pressure.

Repeatability

Control components, for a given set value, usually produce repeated actual values which differ less from each other than from the absolute set value, because the relatively large linearity deviation is excluded.

Table of dimensions (mm) and Weight (mass)Multiple Base Plate G1/8NumberDimension

Number		Dimensi	ions (mm)		Port	Weight	
of valves	A	C	DÍ	E	1	2	(mass) (kg)
2	72	0	40	40	1 x G1/8	G1/8	0.07
3	112	40	80	80	1 x G1/8	G1/8	0.11
4	152	80	120	120	2 x G1/8	G1/8	0.15
5	192	120	160	160	2 x G1/8	G1/8	0.19
6	232	160	200	200	2 x G1/8	G1/8	0.23

Dimensional Diagram No.1 (dimensions in mm) Version with 3-pole connector and base plate

Dimensional Diagram No.2 (dimensions in mm) Version with plug to DIN 43650-1C and base plate

Order Instructions

Version	Elec. Conn.	Dimensional	Order Inst	ructions
	Diagram No	Diagram No	Type	Order No
	Blagram No.	Blagram No.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	oraci ito.
Sets, complete, (0-8 bar) consisting of				
Proppressure regulating valve, 0-8 V	1	1		
Base plate G1/8, cable set straight (2m)	•		PRF-II-01	PS11140-B-01
Base plate a 1/0, cable set straight (Ent)				1011140 0 01
Proppressure regulating valve, 0-8 V	1	1		
Base plate G1/8, cable set bended (2m)	-		PRF-U-01	PS11150-B-01
Babe plate a 1/6, eable bet beliada (Em)				
Proppressure regulating valve, 4-20 mA 2	1			
Base plate G1/8 cable set straight (2m)	-		PRF-I-01	PS11141-B-01
Base plate a 1/0, cable set straight (Ent)				
Prop -pressure regulating valve 4-20 mA 2	1			
Base plate G1/8 cable set bended (2m)	•		PRE-I-01	PS11151-B-01
Dase plate G 1/0, Gable set bellued (211)				1 51115120-01

Proppressure regulating valve NW 2.5 (without	ut accessories)			
Proppressure regulating valve, 0-8 V, 0-8 bar	1	1	PRE-U	PS11110-B
Proppressure regulating valve, 4-20 mA, 0-8 bar	2	1	PRE-I	PS11111-B
Proppressure regulating valve, 0-10 V, 0-2 bar	1	1	PRE-U	PS11130-B-20
Proppressure regulating valve, 4-20 mA, 0-2 bar	2	1	PRE-I	PS11139-B-20
Proppressure regulating valve, 0-10 V, 0-200 mbar	1	1	PRE-U	PS11130-B-02
Proppressure regulating valve, 4-20 mA, 0-200 mbar	2	1	PRE-I	PS11139-A-02

Prop.-pressure regulating valve NW 2.5 with actual value output and plug to DIN 43650-1C (single units without accessories) *

(0				
Proppressure regulating valve, 0-8 V, 0-8 bar, Actual value output 1.25 V (0 bar) – 6.25 V (8 bar)	3	2	PRE-U	PS11113-B
Proppressure regulating valve, 0-10 V, 0-2 bar, Actual value output 1.25 V (0 bar) - 6.25 V (2 bar)	3	2	PRE-U	PS11162-B-20
Proppressure regulating valve, 0 - 10 V, 0 - 0.2 bar, Actual value output 1.25 V (0 bar) - 6.25 V (0,2 bar)	3	2	PRE-U	PS11162-B-02

Prop.-pressure regulating valve NW 2.5 with EMV-mass and plug to DIN 43650-1C (single units without accessories) *

(
Proppressure regulating valve, 0-8 V, 0-8 bar	4	2	PRE-U	PS11164-B
Proppressure regulating valve, 0-10 V, 0 -2 bar	4	2	PRE-U	PS11165-B-20
Proppressure regulating valve, 0-10 V, 0-0.2 bar	4	2	PRE-U	PS11165-B-02
Proppressure regulating valve, 4-20 mA, 0-8 bar	5	2	PRE-I	PS11168-B
Proppressure regulating valve, 4-20 mA, 0-2 bar	5	2	PRE-I	PS11169-B-20
Proppressure regulating valve, 4-20 mA, 0-0.2 bar	5	2	PRE-I	PS11169-B-02

* Corresponding connector included

Accessories	
Single base plate G1/8	PS11112-A-01
Multiple base plate G1/8, for 2 valves	PS11112-A-02
Multiple base plate G1/8, for 4 valves	PS11112-A-04
Multiple base plate G1/8, for 6 valves	PS11112-A-06
Cover plate, complete	PS11160-A
Cable set straight (5 m)	KC3104
Cable set bended (5 m)	KC3106

Characteristics to VD	I 3292		Pressures quoted a	as gauge pressures
System			Piston-type pressur pilot operated, wi electric feedback	re regulating valve, th pneumatic and
Туре			SRE-1/4	SRE-3/8
Port size			G1/4	G3/8
Installation			In any position	
Weight (mass)		kg	0.6	
Medium and ambient temperature	T T _{max}	°C °C	0 +50	
Medium			Filtered, lubricated or oil-free compressed air	
Lubrication			Not required	
Pneumatic Characteri	stics		-	
Nominal pressure	p _n	bar	6.3	
Inlet pressure range ¹⁾	p _{1min} p _{1max}	bar bar	0 10	
Outlet pressure range	p _{2min} p _{2max}	bar bar	0 10	
Nominal flow 2)	Q _N	l/min m³/h	2200 132	2500 150
Nominal flow ²⁾ Recommended flow ³⁾	Q _N	l/min m ³ /h l/min m ³ /h	2200 132 550 33	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾	Q _N Q	l/min m ³ /h l/min m ³ /h %	2200 132 550 33 <1	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾	Q Q P _{2max} p _{2max}	l/min m ³ /h l/min m ³ /h %	2200 132 550 33 <1 <0.5	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾	Q _N Q p _{2max} p _{2max}	I/min m ³ /h I/min m ³ /h % %	2200 132 550 33 <1 <0.5 <0.5	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾	Q _N Q p _{2max} p _{2max} p _{2max}	I/min m ³ /h I/min m ³ /h % % %	2200 132 550 33 <1 <0.5 <0.5 <1	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris	Q _N Q p _{2max} p _{2max} p _{2max} p _{2max}	I/min m ³ /h I/min m ³ /h % % %	2200 132 550 33 <1 <0.5 <0.5 <1	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris Nominal voltage	Q _N Q p _{2max} p _{2max} p _{2max} tics	I/min m ³ /h I/min m ³ /h % % % % V DC	2200 132 550 33 <1 <0.5 <0.5 <1 24 V = ± 10 %	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris Nominal voltage Residual ripple	Q _N Q P _{2max} P _{2max} P _{2max} P _{2max} tics	I/min m ³ /h I/min m ³ /h % % % V DC %	2200 132 550 33 <1 <0.5 <0.5 <1 24 V = ± 10 % 10	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris Nominal voltage Residual ripple Power consumption	Q _N Q p _{2max} p _{2max} p _{2max} tics U _N	I/min m ³ /h I/min m ³ /h % % % % V DC % A	2200 132 550 33 <1 <0.5 <0.5 <1 24 V = ± 10 % 10 0.15	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris Nominal voltage Residual ripple Power consumption Set value input	$\begin{array}{c} Q_{N} \\ Q \\ p_{2max} \\ p_{2max} \\ p_{2max} \\ p_{2max} \\ tics \\ U_{N} \\ I_{Bmax} \\ U_{W} \\ I \end{array}$	I/min m³/h I/min m³/h % % % % % V DC % A V DC % A V mA	2200 132 550 33 <1 <0.5 <0.5 <1 24 V = ± 10 % 10 0.15 0 - 10 0 - 20, 4 - 20	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris Nominal voltage Residual ripple Power consumption Set value input	$\begin{array}{c} Q_{N} \\ Q \\ \\ p_{2\max} \\ p_{2\max} \\ p_{2\max} \\ p_{2\max} \\ \\ U_{N} \\ \\ U_{N} \\ \\ U_{W} \\ \\ I_{B_{max}} \\ \\ U_{W} \\ \\ R_{E} \end{array}$	I/min m³/h I/min m³/h % % % % V V DC % A V mA k	$2200 \\ 132 \\ 550 \\ 33 \\ <1 \\ <0.5 \\ <0.5 \\ <1 \\ 24 V = \pm 10 \% \\ 10 \\ 0.15 \\ 0 - 10 \\ 0 - 20, 4 - 20 \\ 200 \\ 200 \\ $	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris Nominal voltage Residual ripple Power consumption Set value input Input resistance Actual value output	$\begin{array}{c} Q_{N} \\ \hline \\ Q \\ \hline \\ p_{2max} \\ p_{2max} \\ \hline \\ p_{2max} \\ \hline \\ p_{2max} \\ \hline \\ \\ p_{2max} \\ \hline \\ \\ \hline \\ \\ U_{N} \\ \hline \\ \hline \\ \\ U_{N} \\ \hline \\ \\ \\ U_{W} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	I/min m³/h I/min m³/h % % % % % V DC % A V DC % A V mA k V	$2200 132 550 33 <1 <0.5 <0.5 <1 24 V = \pm 10 %100.150 - 100 - 20, 4 - 202000 - 10$	2500 150 850 51
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris Nominal voltage Residual ripple Power consumption Set value input Input resistance Actual value output Output current	Q _N Q p _{2max} p _{2max} p _{2max} p _{2max} U _N U _N U _N U _W I B _{max} U _W I C _X U _X	I/min m³/h I/min m³/h % % % % V DC % A V MA k V mA k V mA	$2200 132 550 33 <1 <0.5 <0.5 <1 24 V = \pm 10 %100.150 - 100 - 20, 4 - 202000 - 1020$	2500 150 850 51

Pressure Regulating Valve

G1/4-G3/8

Electronically controlled (proportional pressure regulating valve)

SRE-...

Special solutions (e.g. temperature, pressure, medium ...) on request

- - Electronically controlled pressure regulating valve
 - Remote controlled
 - Control- and operating pressure from 0 bar
 - Airfit design
 - Direct coupling with airfit swing units
 - No air consumption

1)

 $p_1 \ge p_2 + 10 \% p_2$ at $p_1 = 10$ bar to $p_2 = 6,3$ bar 2)

3) at 6.3 bar and 25 m/s

4) see explanation on page 3

Control Options

Sensitivity

Linearity

pressure.

The smallest deviation from set output pressure which leads to a change in actual output pressure is referred to as sensitivity and this is expressed as a percentage of maximum output pressure. Sensitivity of the XRE II valve is below 0.5%, which allows output pressure to be set very precisely.

The ideal curve showing output pressure in relation to electronic signal would be a straight (linear) line (see dotted line), to predict exactly which pressure can be expected at a given voltage. The deviation can be calculated from the maximal deviation from the straight line, in relation to the highest possible

The same set output pressure generates slightly different actual output pressures, depending on whether the previous setting was higher or lower. This difference, known as hysteresis, is caused by friction and temporary deformation of elastic components. The hysteresis of the SRE valve is below 0.1 bar.

Repeatability

Control components, for a given set value, usually produce repeated actual values which differ less from each other than from the abolute set value, because the relatively large linearity deviation is excluded. Repeatability is improved if hysteresis is minimised.

Dimensions (mm)			
Type: SRE-1/4			
	23 45 50	n size	
Order Instructions			
Basic model for control 0-10) V, NG (normally closed)		
Port size	max.outputpressure(bar)	Туре	Order No.
G1/4	10	SRE-U-1/4 NG	PB 59849-000
G3/8	10	SRE-U-3/8 NG	PB 59949-000
Version for control 4 – 20 mA	, NG (normally closed)	1	
G1/4	10	SRE-I-1/4 NG	PB 59849-002
G3/8	10	SRE-I-3/8 NG	PB 59949-002
Version for control 0 – 20 mA	, NG (normally closed)		
G1/4	10	SRE-I-1/4 NG	PB 59849-001
G3/8	10	SRE-I-3/8 NG	PB 59949-001
Version for control 0–10 V, N	O (normally open)		
G1/4	10	SRE-U-1/4 NO	PB 59849-010
G3/8	10	SRE-U-3/8 NO	PB 59949-010
Version for control 4 – 20 mA	, NO (normally open)		
G1/4	10	SRE-U-1/4 NO	PB 59849-012
G3/8	10	SRE-U-3/8 NO	PB 59949-012
Version for control 0 – 20 mA	, NO (normally open)		
G1/4	10	SRE-U-1/4 NO	PB 59849-011
G3/8 For the version with NPTF three	10 ad. complete the Order No	SRE-U-3/8 NO	PB 59949-011
PB49→PB49-N			
Accessories			DI 16065
			PL 10900

Characteristics to VD	1 3292		Pressures quoted a	as gauge pressures	
System			Piston-type press pilot operated, wit electric feedback	ure regulating valve, h pneumatic and	
Туре			CRE-3/8	CRE-1/2	
Port size			G3/8	G1/2	
Installation			In any position		
Weight (mass)		kg	0.95		
Medium and ambient temperature	T _{min} T _{max}	°C °C	0 +50		
Medium			Filtered, lubricated or oil-free compressed air		
Lubrication			Not required		
Pneumatic Character	istics				
Nominal pressure	p _n	bar	6.3		
Inlet pressure range ¹⁾	$\begin{array}{c} p_{_{1min}} \\ p_{_{1max}} \end{array}$	bar bar	0 16		
Outlet pressure range	p _{2min} p _{2max}	bar bar	0 10		
Nominal flow ²⁾	Q _N	l/min m³/h	4500 270	6000 360	
Nominal flow ²⁾ Recommended flow ³⁾	Q _N Q	l/min m ³ /h l/min m ³ /h	4500 270 850 51	6000 360 1900 114	
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾	Q _N Q	l/min m ³ /h l/min m ³ /h %	4500 270 850 51 <1	6000 360 1900 114	
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾	Q Q p _{2max} p _{2max}	l/min m ³ /h l/min m ³ /h % %	4500 270 850 51 <1 <0.5	6000 360 1900 114	
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾	Q _N Q P _{2max} P _{2max}	l/min m ³ /h l/min m ³ /h % %	4500 270 850 51 <1 <0.5 <0.5	6000 360 1900 114	
Nominal flow ²) Recommended flow ³) Hysteresis ⁴) Repeatability ⁴) Sensitivity ⁴) Linearity ⁴)	Q _N Q P _{2max} P _{2max} P _{2max}	l/min m ³ /h l/min m ³ /h % %	4500 270 850 51 <1 <0.5 <0.5 <1	6000 360 1900 114	
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris	Q _N Q p _{2max} p _{2max} p _{2max} p _{2max}	l/min m ³ /h l/min m ³ /h % % %	4500 270 850 51 <1 <0.5 <0.5 <1	6000 360 1900 114	
Nominal flow ²) Recommended flow ³) Hysteresis ⁴) Repeatability ⁴) Sensitivity ⁴) Linearity ⁴) Electrical Characteris Nominal voltage	$\begin{array}{c} Q_{N} \\ \\ Q \\ \\ p_{2max} \\ \\ p_{2max} \\ \\ p_{2max} \\ \\ p_{2max} \\ \\ \\ \textbf{tics} \\ \\ \\ U_{N} \end{array}$	I/min m ³ /h I/min m ³ /h % % % %	4500 270 850 51 <1 <0.5 <0.5 <1 24 V = ± 10 %	6000 360 1900 114	
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris Nominal voltage Residual ripple	Q _N Q p _{2max} p _{2max} p _{2max} p _{2max} tics	I/min m ³ /h I/min m ³ /h % % % % V DC	4500 270 850 51 <1 <0.5 <0.5 <1 24 V = ± 10 % 10	6000 360 1900 114	
Nominal flow ²) Recommended flow ³ Hysteresis ⁴ Repeatability ⁴ Sensitivity ⁴ Linearity ⁴ Electrical Characteris Nominal voltage Residual ripple Power consumption	Q _N Q p _{2max} p _{2max} p _{2max} p _{2max} tics U _N	I/min m ³ /h I/min m ³ /h % % % % V DC % A	4500 270 850 51 <1 <0.5 <0.5 <1 24 V = ± 10 % 10 0.15	6000 360 1900 114	
Nominal flow ²) Recommended flow ³) Hysteresis ⁴) Repeatability ⁴) Sensitivity ⁴) Linearity ⁴) Electrical Characteris Nominal voltage Residual ripple Power consumption Set value input	Q _N Q p _{2max} p _{2max} p _{2max} p _{2max} tics U _N U _N	I/min m³/h I/min m³/h % % % % % V DC % A V DC % A V mA	4500 270 850 51 <1 <0.5 <0.5 <1 24 V = ± 10 % 10 0.15 0 − 10 (1V =1bar) 0 − 20, 4 − 20	6000 360 1900 114	
Nominal flow ²) Recommended flow ³) Hysteresis ⁴) Repeatability ⁴) Sensitivity ⁴) Linearity ⁴) Electrical Characteris Nominal voltage Residual ripple Power consumption Set value input	$\begin{array}{c} Q_N \\ Q \\ P_{2max} \\ P_{2max} \\ P_{2max} \\ P_{2max} \\ \textbf{I}_{Bmax} \\ U_N \\ I \\ H_{Bmax} \\ U_W \\ I \\ R_E \end{array}$	l/min m³/h l/min m³/h % % % % V DC % A V mA k	4500 270 850 51 <1 <0.5 <0.5 <1 24 V = ± 10 % 10 0.15 0 − 10 (1V =1bar) 0 − 20, 4 − 20 200	6000 360 1900 114	
Nominal flow ²) Recommended flow ³) Hysteresis ⁴) Repeatability ⁴) Sensitivity ⁴) Linearity ⁴) Electrical Characteris Nominal voltage Residual ripple Power consumption Set value input Input resistance Actual value output	Q _N Q p _{2max} p _{2max} p _{2max} p _{2max} tics U _N I _{Bmax} U _W I K _E U _X	I/min m³/h I/min m³/h % % % % % V DC % A V DC % A V mA k V	4500 270 850 51 <1 <0.5 <0.5 <1 24 V = ± 10 % 10 0.15 0 − 10 (1V =1bar) 0 − 20, 4 − 20 200 0 − 10	6000 360 1900 114	
Nominal flow ²⁾ Recommended flow ³⁾ Hysteresis ⁴⁾ Repeatability ⁴⁾ Sensitivity ⁴⁾ Linearity ⁴⁾ Electrical Characteris Nominal voltage Residual ripple Power consumption Set value input Input resistance Actual value output Output current	$\begin{array}{c} Q_N \\ \hline \\ Q \\ \hline \\ P_{2max} \\ \hline \hline \hline \hline \\ P_{2max} \\ \hline \hline \hline \hline \\ P_{2max} \\ \hline \hline \hline \hline \hline \hline \\ P_{2max} \\ \hline $	I/min m³/h I/min m³/h % % % % V DC % A V MA k V mA k V mA	$\begin{array}{r} \textbf{4500} \\ \textbf{270} \\ \textbf{850} \\ \textbf{51} \\ <1 \\ <0.5 \\ <0.5 \\ <1 \\ \end{array}$ $\begin{array}{r} 24 \ V = \pm 10 \ \% \\ 10 \\ 0.15 \\ 0 - 10 \ (1 \ V = 1 \ bar) \\ 0 - 20, \ 4 - 20 \\ 200 \\ 0 - 10 \\ 20 \\ \end{array}$	6000 360 1900 114	

1) $p1 \ge p2 + 10 \% p2$ 2) at $p_1 = 10$ bar to $p_2 = 6.3$ bar

3) at 6.3 bar and 25 m/s

4) see explanation on page 3

Pressure Regulating Valve

G3/8-G1/2

Electronically controlled (proportional pressure regulating valve)

Special solutions (e.g. temperature, pressure, medium ...) on request

- Electronically controlled pressure regulating valve
- remote controlled
- Control- and operating pressure from 0 bar
- Airfit design
- Version with NPTF-thread
- no air consumption

Control Options

Sensitivity

The smallest deviation from set output pressure which leads to a change in actual output pressure is referred to as sensitivity and this is expressed as a percentage of maximum output pressure. Sensitivity of the CRE valve is below 0.5%, which allows output pressure to be set very precisely.

Linearity

The ideal curve showing output pressure in relation to electronic signal would be a straight (linear) line (see dotted line), to predict exactly which pressure can be expected at a given voltage. The deviation can be calculated from the maximal deviation from the straight line, in relation to the highest possible pressure.

Hysteresis

The same set output pressure generates slightly different actual output pressures, depending on whether the previous setting was higher or lower. This difference, known as hysteresis, is caused by friction and temporary deformation of elastic components. The hysteresis of the CRE valve is below 0.1 bar.

Repeatability

Control components, for a given set value, usually produce repeated actual values which differ less from each other than from the abolute set value, because the relatively large linearity deviation is excluded. Repeatability is improved if hysteresis is minimised.

OrderInstructions			
Basic model for control 0– 10 V, NG (normally closed)			
Port size	max.outputpressure(bar)	Туре	Order No.
G3/8	10	CRE-U-3/8 NG	PB 60149-000
G1/2	10	CRE-U-1/2 NG	PB 60249-000
Version for control 4 – 20 mA, NG (normally closed)			
G3/8	10	CRE-I-3/8 NG	PB 60149-002
G1/2	10	CRE-I-1/2 NG	PB 60249-002
Version for control 0 – 20 mA, NG (normally closed)			
G3/8	10	CRE-I-3/8 NG	PB 60149-001
G1/2	10	CRE-I-1/2 NG	PB 60249-001
Version for control 0–10 V, NO (normally open)			
G3/8	10	CRE-U-3/8 NO	PB 60149-010
G1/2	10	CRE-U-1/2 NO	PB 60249-010
Version for control 4 – 20 mA, NO (normally open)			
G3/8	10	CRE-U-3/8 NO	PB 60149-012
G1/2	10	CRE-U-1/2 NO	PB 60249-010
Version for control 0 – 20 mA, NO (normally open)			
G3/8	10	CRE-U-3/8 NO	PB 60149-011
G1/2	10	CRE-U-1/2 NO	PB 60249-010
Accessories			
Mounting kit			PL 17518
Coupling kit			PL 17608