

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

OSP-E Series Electric Linear Drives and Guides Catalog 0951

ENGINEERING YOUR SUCCESS.

\land WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users h aving technical expertise. It is important that you analyze all aspects of your application including consequences of any failure, and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated on the separate page of this document entitled "Offer of Sale".

© Copyright 2008 Parker Hannifin Corporation. All Rights Reserved

ELECTRIC ACTUATOR

2D & 3D CAD Drawings can be downloaded from website www.parkeroriga.com

ATTENTION!

Contact PARKER-ORIGA for sizing software and/or technical assistance 630-871-8300 Application Sheet on Page 173

All dimensions are in European-Standard. Please convert all in US-Standard.

Conversion Table

Multiply	Ву	To Obtain
Millimeters	.03937	Inches
Newtons	.2248	Lbs.(F)
Newton-Meters	8.8512	In-Lbs
Kilograms	2.205	Lbs.
Inches	25.4	Millimeters
Lbs.(F)	4.448	Newtons
In-Lbs	.113	Newtons-Meters
Lbs.	.45359	Kilograms

i

Page

117

128,129 130 131 144, 145

132 133

134 135

146

157-159 161 162-170 171-172

173

176

174-175

OSP ORIGA SYSTEM PLUS

	Page	
OSP Concept	2-3	OSP-Accessories
Modular Components Overview	4-7	Overview Motor Mountings
Applications for OSP-E Drives	8-9	(Coupling housing, motor flange, motor coupling)
Toothed Belt Driven – With Integrated Recirculating Ball Bearing Guide Series OSP-EBHD 20, 25, 32, 50		Series OSP-EBHD Series OSP-EBV Series OSP-EB
or integrated Roller Guide	11-14	Series OSP-ESB,ST,SBR,STR
Series OSP-EBHD 25,32,50	15-24	Motor liange conligurator, freely selectable
– Vertical LinearDrive with Integrated Recirculating Ball Bearing Guide	25-28	Belt Gear, freely selectable End Cap Mounting
Series OSP-EBV 20, 25	29-34	Series OSP-EBHD
– With Internal Plain Bearing Guide Series OSP-EB 25, 32, 50	35-38 39-46	Series OSP-ESBR,SB Series OSP-ESBR, STR
Screw Driven		End Cap Mounting for OSP-E with guide
- With Ball Screw Drive and Internal Plain Bearing Guide	47-50	Flange Mounting C Series OSP-ESBR,STR
Series USP-ESB25, 32, 50	51-58	Profile fastening for multi-axis systems
and Internal Plain Bearing Guide Series OSP-EST 25, 32, 50	59-62 63-68	Mid-Section Support, standard
Screw Driven with Piston Rod		Series OSP-EB,SB,ST,SBR,STR
- With Ball Screw Drive and Internal Plain Bearing Guide	69-72	Mid-Section Support for OSP-E with guide
Series OSP-ESBR 25, 32, 50	73-76	Profile connection
- With Trapezoidal Screw Drive and Internal Plain Bearing Guide	77-80	Mounting rail OSP-E T-Nut Profile OSP-E Connection Profile OSP-E
Multi-Axis Systems	81-84	Trunnion mounting EN OSP-ESBR,STR
Overview	85-88	Pivot mounting EL OSP-ESBR,STR
Adapter Plates	89-97	Clevis Mounting OSP-EB,SB,ST
Intermediate Drive Shaft	99	Clevis Mounting, low backlash Inversion Mounting OSP-E.,B., .,SB, .,ST
Linear Guides		Piston Bod Mountings
Overview	101-102	Piston Rod Eye
Plain Bearing Guide SLIDELINE	103-104	Piston Rod Clevis
Roller Guide POWERSLIDE	105-108	Piston Rod Compensating Coupling
Aluminium-Roller Guide PROLINE	109-111	Magnetic Switches
neavy Duty-Guide nD	113-115	SFI-plus Displacement Measuring System
		Cable Cover
		Servo and Stepper Motors and Gearboxes
		Ordering Instructions
		Application Sheet

Parker

Safety Guide

Offer of Sale

Based on the concept of the rodless pneumatic cylinder, well proven worldwide, PARKER-ORIGA now offers the complete solution for linear drive systems. Developed for absolute reliability, high performance, easy handling and optimized design, ORIGA SYSTEM PLUS can master even the most difficult installation requirements.

ORIGA SYSTEM PLUS

is a completely modular concept, enabling pneumatic and electric drives to be combined with guides and control modules for all kinds of applications. The main system carriers are the drives themselves, consisting of extruded aluminium profiles with double dovetail slots on three sides, providing direct mounting for all modular options.

MODULAR SYSTEM

- Electric Toothed Belt Drive
 - For applications with higher speeds and precise movement and positioning for longer travel.
- Electric Screw Drive
 - For higher drive power and precise movement and positioning.

ORIGA

Pneumatic Drive

- For a wide variety of applications with simple handling, combined with simple control possibilities and a broad power spectrum.
- Ideal for fast, repetitive movements and simple positioning duties.

For additional information on rodless pneumatic actuators, please contact factory for OSP-P literature.

- 18 additional guide variants provide any required precision, performance and load capacity.
- Compact solutions, easy to install and simple to retrofit.
- Valves and control elements can be mounted directly on the pneumatic drive.
- A wide range of mounting options provides great installation flexibility.

OSP-E Series Electric Linear Drives and Guides One Concept – Three Drive Options

* Information on Pneumatic Linea	r Drives, contact factory	for literature	
Basic Linear Drive - Standard Version • Series OSP-P* • Series OSP-E Toothod Bolt with internal Plain Boaring	O montane	Multi-Axis Systems Connecting elements • Adapter Plates • Intermediate Drive Shafts	
Guide Toothed Belt with integrated Guides Vertical Toothed Belt with integrated Recirculating Ball Bearing Guide Series OSP-E Screw (Ball Screw Trapezoidal Screw)	Contraction	Duplex-Connection Series OSP-P* 	
Air Connection on the End-face or both at One End • Series OSP-P*	Francista Francista	Multiplex-Connection Series OSP-P* 	
Clean Room Cylinders certified to DIN EN ISO 146644-1	0	Linear Guides - SLIDELINE • Series OSP-P* • Series OSP-E Screw	
 Series OSP-ESB Products in ATEX-Version Series OSP-P* 		Linear Guides - POWERSLIDE • Series OSP-P* • Series OSP-E Belt • Series OSP-E Screw	
Products in ATEX-Version		Linear Guides - PROLINE • Series OSP-P* • Series OSP-E Belt • Series OSP-E Screw	
Rodless Cylinders with plain baering SLIDELINE		Linear Guides – STARLINE • Series OSP-P*	
counter-rotation of the cylinders • Series OSP-P*		Heavy Duty-Guides - HD • Series OSP-P* • Series OSP-E Screw	
Integrated 3/2-Way Valves • Series OSP-P*	·	Brakes • Active Brakes* • Passive Brakes*	
Clevis Mounting Series OSP-P* Series OSP-E Belt Series OSP-E Screw		Magnetic Switches • Series OSP-P* • Series OSP-E Belt • Series OSP-E Screw	Fast
Series OSP-P* Series OSP-E Belt Series OSP-E Screw	O Dinner	SFI-Plus Dispacemet Mesuring Systems • Series OSP-P* • Series OSP-E Screw	
Mid-Section Support • Series OSP-P* • Series OSP-E Belt • Series OSP-E Screw		Drive Systems and components for Electrical Linear Drives OSP-E • Stepper Motor and Controller	
Inversion Mounting • Series OSP-P* • Series OSP-E Belt • Series OSP-E Screw	1	 Servo Motor and Controller Gears 	

ORIGA

Catalog 0950

Overview

OSP-E Series Electric Linear Drives and Guides **Modular Components**

Drives	OSP-E20 -BHD ¹⁾	OSP-E25 -BHD ^{1), 2)}	OSP-E32 -BHD ^{1), 2)}	OSP-E50 -BHD ^{1), 2)}	OSP-E20 -BV ³⁾	OSP-E25 -BV ³⁾	OSP-E25 -B ⁴⁾	OSP-E32 -B ⁴⁾	OSP-E50 -B ⁴⁾
Effective action force FA [N]	450 - 550	550 - 1070	1030 - 1870	1940 - 3120	450 - 650	1050 - 1490	50	100 - 150	300 - 425
Max. Velocity v [m/s]	3.0	10.0 / 5	10.0/5	10.0/5	3.0	5.0	2.0	3.0	5.0
Integrated Magnets	0	0	0	0	-	-	0	0	0
Free choice of stroke length [mm] **	1 - 5760	1 - 7000	1 - 7000	1 - 7000	1 - 1000	1 - 1500	1 - 3000	1 - 5000	1 - 5000
Temperature range [°C]	-30 - +80	-30 - +80	-30 - +80	-30 - +80	-30 - +80	-30 - +80	-30 - +80	-30 - +80	-30 - +80
Tandem Version	0	0	0	0	0	0	0	0	0
Bi-parting Version	0	0	0	0	-	-	0	0	0
Stainless steel parts	Х	Х	Х	Х	Х	Х	Х	Х	X
Integrated planetary gearbox LPB***	-	0	0	0	-	-	-	-	-
Self-Guidance									
F [N]	1600	3000 / 986	10000 / 1348	15000 / 3704	1600	3000	160	300	850
Mx [Nm]	21	50 / 11	120 / 19	180 / 87	20	50	2	8	16
My [Nm]	150	500 / 64	1000 / 115	1800 / 365	100	200	12	25	80
Mz [Nm]	150	500 / 64	1400/115	2500 / 365	100	200	8	16	32
Slideline							-		
F [N]	-	_	-	-	-	-	-	_	-
Mx [Nm]	-	_	-	_	-	-	-	_	-
My [Nm]	_	_	_	_	_	-	-	_	_
Mz [Nm]	_	_	_	_	_	_	-	_	_
Proline	1				1		J		
F [N]	_	_	_	_	_	_	986	1348	3582
Mx [Nm]	_	_	_	_	_	-	19	33	128
My [Nm]	_	_	_	_	_	_	44	84	287
Mz [Nm]	-	_	_	_	_	_	44	84	287
Powerslide							_ 	04	207
F [N]	-	_	_	_	_	_	910 - 1190	1400 - 2300	3000 - 4000
My [Nm]	_		_	_	_		14 - 20	20 - 50	90 - 1/0
My [Nm]						-	63 - 175	70 - 175	250 - 350
Mz [Nm]	_		_	_	_		63 - 175	70 - 175	250 - 350
HD-Guide (Heavy Duty)							00 175	10-115	230 030
F [N]	1_	_	_	_	_	_	L	_	-
My [Nm]		_				_		_	
My [Nm]		_				-			
Mz [Nm]	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	<u> </u>		-
Multi Avia Svotom									
Connecting elements	0	0	0	0	0	0	0	0	0
Connecting elements	0	0	0	0	0	0		0	0
Connecting shart	0	0	0	0	0	0	0	0	0
Clean Deam Culindera	V	v	V	V	V	V	V	v	V
	^	٨	<u> </u>	۸	^	^	^	٨	Λ
Mountings	V	V	V	V	V	V	0	0	0
Clevis Mounting	X	X	X	X	X	X	0	0	0
End Cap Mounting / Midsection Support	0	V	0	U V	X	X	0	0	0
Inversion Mounting	X	X	X	X	X	X	0	0	0
Adapter Profile / I-Nut Profile	0	0	0	0	X	X	0	0	
Magnetic switches	0	0	0	0		0	0	0	
Heed Switches KS (NU, NC)		0	0	0	0	0	0	0	
Electronic Switches ES (PNP, NPN)	0	0	0	0	0	0	0	0	
Measuring systems		X							
SFI-plus Displacement Measuring System	X	X	X	X	X	X	X	X	X
Motor package (stepper / servo)	0	0	0	0	0	0	0	0	0
Gearbox	1-	-	-		1 -		-	1	
Planetary gear and angular gear	0	0	0	0	0	0	-	-	-
 Standard version Option 	¹⁾ = Li ²⁾ = Li	near Drive with Toothe	d Belt and Integrated	Recirculating Ball Be Roller Guide	earing Guide				
X = Currently not available * = other temperature ranges on request	³⁾ = Ve ⁴⁾ = Li ⁵⁾ = Li	rtical Linear Drive wit near Drive with Toothe near Drive with Ball Si	n loothed Belt and Int d Belt and Internal Pl prew Drive and Interna	tegrated Recirculating ain Bearing Guide al Plain Bearing Guid	g Ball Bearing Guide Ie				

** = exc. safety clearance from mechanical end position other stroke lengths on request
 *** = ratio i = 3, 5, 10

a) Elinear Drive with Ball Screw Drive and Internal Plain Bearing Guide
 b) Elinear Drive with Trapezoidal Screw Drive and Internal Plain Bearing Guide
 n) Elinear Drive with Ball Screw Drive, Internal Plain Bearing Guide and Piston Rod
 a) Elinear Drive with Trapezoidal Screw Drive, Internal Plain Bearing Guide and Piston Rod

() ORIGA

Catalog 0950 Overview

OSP-E Series Electric Linear Drives and Guides Modular Components

OSP-E25 -SB ⁵⁾	OSP-E32 -SB ⁵⁾	OSP-E50 -SB ⁵⁾	OSP-E25 -ST ⁶⁾	OSP-E32 -ST ⁶⁾	OSP-E50 -ST ⁶⁾	OSP-E25 -SBR ⁷⁾	OSP-E32 -SBR ⁷⁾	OSP-E50 -SBR 7)	OSP-E25 -STR ⁸⁾	OSP-E32 -STR ⁸⁾	OSP-E50 -STR ⁸⁾
250	600	1500	600	1300	2500	260	900	1200	800	1600	3300
0.25	0.5	1.25	0.1	0.1	0.15	0.25	0.5	1.25	0.075	0.1	0.125
0	0	0	0	0	0	0	0	0	0	0	0
 1 - 1100	1 - 2000	1 - 3200	1 - 1100	1 - 2000	1 - 2500	1 - 500	1 - 500	1 - 500	1 - 500	1 - 500	1 - 500
-20 - +80	-20 - +80	-20 - +80	-20 - +70	-20 - +70	-20 - +70	-20 - +80	-20 - +80	-20 - +80	-20 - +70	-20 - +70	-20 = +70
0	0	0	0	0	0	-20 +00	-20 +00	-20 +00	-20 +70	-20 +10	-20 +70
		0	0	0	0	-	_	-			_
V	V	V	V	V	V	V	V	V	V	V	V
^	^	^	^	^	^	^	^	^	^	۸ 	^
-	-	-	-	-	-	-	-	-	-	-	-
500	4000	0000	500	4000	4500	1		1		-	
500	1200	3000	500	1000	1500	-	-	-	-	-	-
2	8	16	2	6	13	-	-	-	-	-	-
12	25	80	24	65	155	-	-	-	-	-	-
8	16	32	7	12	26	-	-	-	-	-	-
1	1			1		1	1	1			
675	925	2000	675	925	2000	-	-	-	-	-	-
14	29	77	14	29	77	-	-	-	-	-	-
34	60	180	34	60	180	-	-	-	-	-	-
34	60	180	34	60	180	-	-	-	-	-	-
986	1348	3582	986	1348	3582	-	-	-	-	-	-
19	33	128	19	33	128	-	-	-	-	-	-
44	84	287	44	84	287	-	-	-	-	-	-
44	84	287	44	84	287	-	_	-	-	-	-
1											
910-1190	1400-2300	3000-4000	900-1190	1400-2300	3000-4000	-	_	-	_	-	_
14-20	20-50	90-140	14-20	20-50	90-140	-	_	-	-	-	_
63-175	70-175	250-350	63-175	70-175	250-350	-	_	-	_	-	-
63-175	70-175	250-350	63-175	70-175	250-350	_	_	-	_	-	_
000				1.0.110	200 000	I					
6000	6000	18000	6000	6000	18000	_	_	-	_	-	_
320	475	1400	320	475	1400	_	_	_	_	-	_
260	285	1100	260	285	1100		_	-	_		_
320	475	1400	320	475	1400		_	-	_		_
020	475	1400	020	475	1400	-	_			-	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0		0	V	V	V	V	V	V	V	V	X
0	0	0	X	X	X	X	X	X	X	X	X
	-		-		-	1		1	1		
0	0	0	0	0	0	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0
1				1				-			
0	0	0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-
1						a					

Catalog 0950 Drive Options

OSP-E Series Electric Linear Drives and Guides One System – Seven Drive Options

Linear Drive with Toothed Belt and integrated Recirculating Ball Bearing Guide or Roller Guide Series OSP-E..BHD

Linear Drive with Toothed Belt and internal Plain Bearing Guide Series OSP-E..B

Linear Drive with Ball Screw Drive and internal Plain Bearing Guide Series OSP-E..SB

Linear Drive with Ball Screw Drive, internal Plain Bearing Guide and Piston Rod Series OSP-E..SBR

Ö ORIGA

Vertical Linear Drive with Toothed Belt and integrated Recirculating Ball Bearing Guide Series OSP-E..BV

Linear Drive with Trapezoidal Screw Drive and internal Plain Bearing Guide Series OSP-E..ST

Linear Drive with Trapezoidal Screw Drive, internal Plain Bearing Guide and Piston Rod Series OSP-E..STR

Catalog 0950 Standard Versions

OSP-E Series Electric Linear Drives and Guides **Options & Accessories**

Description		Toothed Belt-Driven – Basic Versi	ons		
	Toothed Belt-Driven with Integrated Guide	Vertical Linear Drive with Too- thed Belt	Toothed Belt-Driven		
Standard Versions	Direction of motion Position of the drive shaft	- Position of the drive shaft	- Position of the drive shaft		
Options	 Tandem Bi-directional Integrated Planetary Gearbo 	– Tandem x	– Tandem – Bi-directional – Niro		
Mountings					
Clevis Mounting	-	-	0		
End Cap Mounting	0	-	0		
Mid-Section Support	0	-	0		
Inversion Mounting	-	-	0		
Accessories					
Magnetic Switches	0	0	0		
Motor Mountings	0	0	0		
Linear Guides	-	-	0		
Multi-Axis Connection	0	0	0		
System					
Description		Scrow-Drivon - Basic Versions			
Decemption	Ball Screw -Driven	Trapezoidal Screw- Driven	Screw-Driven with extending Rod		
			- with Trapezoidal Screw - wit h Ball Screw		
Standard Versions	- Spindle pitch of the ball	4	4		
Options	 Clean room version Displacement Measuring System SFI-plus 	 Displacement Measuring System SFI-plus 			
Mountings					
Clevis Mounting	0	0	-		
End Cap Mounting	0	0	0		
Mid-Section Support	0	0	0		
Inversion Mounting	0	0	-		
Accessories					
Magnetic Switches	0	0	0		
Motor Mounting	0	0	0		
Flansh Mounting	-	_	0		
Trunnion Mounting	-	_	0		
Piston Rod Mounting			0		
	_		U		
Linear Guides	- 0	0			

-Parker

ORIGA

Features

() ORIGA

Û ORIGA

ORIGA

Linear Drive with Toothed Belt and Integrated Guide

- with Recirculating Ball Bearing Guide - with Roller Guide

Series OSP-E..BHD

Contents

Description	Page
Overview	11-14
Version with Recirculating Ball Bearing Guide	
Technical Data	15-17
Dimensions	18, 19
Order Instructions	24
Version with Roller Guide	
Technical Data	19-22
Dimensions	23

() ORIGA

Catalog 0950	OSP-E Series Electric Linear Drives and Guides
Features	Toothed Belt

The latest generation of high capacity linear drives, the OSP-E..BHD series combines robustness, precision and high performance. The aesthetic design is easily integrated into any machine constructions by virtue of extremely adaptable mountings.

Linear Drive with Toothed Belt - selective with Integrated Recirculating Ball Bearing Guide or Integrated Roller Guide

OSP-E Series Electric Linear Drives and Guides Toothed Belt

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com

Ö ORIGA

SERIES OSP-E. LINEAR DRIVE WITH TOOTHED BELT AND INTEGRATED GUIDE

STANDARD VERSIONS **OSP-E..BHD** Version with Recirculating Ball Bearing Guide Pages 15-19 Version with Roller Guide Pages 20-23

OPTIONS

TANDEM

Standard carrier with integrated guide and magnets for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

DRIVE SHAFT WITH CLAMP SHAFT

DRIVE SHAFT WITH PLAIN SHAFT

ACTUATING DIRECTION Page 172 Important in parallel operations, e.g. with intermediate drive shaft

Page 18 For higher moment support.

BI-PARTING VERSION Page 18 For perfectly synchronised bi-parting movements.

DRIVE SHAFT WITH CLAMP SHAFT AND PLAIN SHAFT For connections with intermediate drive shaft (Page 99)

HOLLOW SHAFT WITH KEYWAY For close coupling of motors and external gears.

INTEGRATED PLANETARY GEARBOX

Page 19 For compact installation and very low backlash.

ACCESSORIES

MOTOR MOUNTINGS

Page 120

END CAP MOUNTING Page 128 For mounting the drives on the end cap.

MID-SECTION SUPPORT

Page 134 For supporting long drives or mounting the linear drives on dovetail grooves.

MAGNETIC SWITCHES TYPE RS AND ES

Page 153 For contactless position sensing of end stop and intermediate carrier positions.

MULTI-AXIS SYSTEMS Page 86

For modular assembly of linear drives up to multi-axis systems.

A3P106E00FAG0X

Ö ORIGA

Characteristics

Cha	racteristics		Symbol	Unit	Description
Gen	eral Features				
Seri	es			OSP-EB	BHD
Name				Linear Dr integrated guide	ive with Toothed Belt and d recirculating ball bearing
Mounting				See drawi	ings
Ambient- Temperature range		$ec{\vartheta}_{\min} \ ec{\vartheta}_{\max}$	°C ℃	-30 +80	
Weig	ght (mass)		kg	Seetable	
Installation				In any pos	sition
	Slotted profile			Extruded	anodized aluminium
	Toothed belt			Steel-core	ded polyurethane
	Pulley			Aluminiun	n
_	Guide			Recircula	ting Ball Bearing Guide
Aateria	Guide rail			Hardenec precision,	d steel rail with high , accuracy class N
2	Guide carrier			Steel carr system, g 0.02 x C,	rier with integrated wiper prease nipples, preloaded accuracy class H
	Sealing band			Hardeneo	d, corrosion resistant steel
	Screws, nuts			Zinc plate	ed steel
	Mountings			Zinc plate	ed steel and aluminium
Enca	apsulation class		IP	54	

Weight (mass) and Inertia

• •	·						
Series	Weight (mass At stroke 0 m	s)[kg] Add per metre stroke	e Moving mass	Inertia [x 10 ⁻⁶ kgm ²] At stroke 0 m Add per metre stroke per kg mass			
OSP-E20BHD	2.8	4	0.8	280	41	413	
OSP-E25BHD	4.3	4.5	1.5	1229	227	821	
OSP-E32BHD	8.8	7.8	2.6	3945	496	1459	
OSP-E50BHD	26	17	7.8	25678	1738	3103	
OSP-E20BHD*	4.3	4	1.5	540	41	413	
OSP-E25BHD*	6.7	4.5	2.8	2353	227	821	
OSP-E32BHD*	13.5	7.8	5.2	7733	496	1459	
OSP-E50BHD*	40	17	15	49180	1738	3103	

* Version: Tandem and Bi-parting (Option)

Installation Instructions

Use the threaded holes in the end cap for mounting the linear drive. Check if mid-section supports are needed using the maximum allowable unsupported length graph on page 17. At least one end cap must be secured to prevent axial sliding when midsection support is used.

Maintenance

Depending on operating conditions, inspection of the linear drive is

recommended after 12 months or 3000 km operation. Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

Linear Drive

Integrated Recirculating Ball Bearing Guide Series OSP-E..BHD Size 20 to 50

Standard Versions

- Toothed Belt Drive with integrated Recirculating Ball Bearing Guide
- Drive Shaft with clamp shaft or plain shaft
- Choice of motor mounting side
- Dovetail profile for mounting of accessories and the drive itself

Options

- Tandem version for higher moments
- Bi-parting version for synchronised movements
- Integrated planetary gearboxDrive shaft with
- clamp shaft and plain shaft
 hollow shaft with keyway
- Special drive shaft versions on request

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended:

- 1. Determination of the lever arm length I_x, I_y and I_z from m_e to the center axis of the linear drive.
- 2. Calculation of the load F_x or F_y to the carrier caused by m_e $F = m_e \cdot g$
- 3. Calculation of the static and dynamic force F_A which must be transmitted by the toothed belt. $F_{A(horizontal)} = F_a + F_0 = m_g \cdot a + M_0 \cdot 2\pi / U_{ZR}$ $F_{A(vertical)} = F_g + F_a + F_0$ $= m_g \cdot g + m_g \cdot a + M_0 \cdot 2\pi / U_{ZR}$
- 4. Calculation of all static and dynamic moments M_x , M_y and M_z which occur in the application. $M = F \cdot I$
- 5. Selection of maximum permissible loads via Table T3.
- 6. Calculation and checking of the combined load, which must not be higher than 1.
- 7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
- 8. Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

- I = distance of a mass in the x-, y- and z-direction from the guide [m]
- m_e = external moved mass [kg]
- m_{LA} = moved mass of linear drive [kg]

$$m_{g} = total moved mass$$

 $(m_{e} + m_{LA}) [kg]$

- $F_{x/y}$ = load excerted on the carrier in dependence of the installation position [N]
- F_A = action force [N]
- $M_0 = no-load torque [Nm]$
- U_{ZR} = circumference of the pulley (linear movement per revolution) [m]
- $g = gravity [m/s^2]$
- $a_{max} = maximum acceleration [m/s²]$

Performance Overview

						\sim				
Characteristics		Unit	Descripti	Description						
Series			OSP-E20BHD	OSP-E25BHD	OSP-E32BHD	OSP-E50BHD				
Max. speed		[m/s]	3 ¹⁾	5 ¹⁾	5 ¹⁾	5 ¹⁾				
Linear motion p of drive shaft	[mm]	125	180	240	350					
Max. rpm on drive shaft		[min ⁻¹]	2000	1700	1250	860				
Max. effective	< 1 m/s:	[N]	550	1070	1870	3120				
Action force	1-3 m/s:	[N]	450	890	1560	2660				
F _A at speed	> 3 m/s:	[N]	-	550	1030	1940				
No-load torque		[Nm]	0.6	1.2	2.2	3.2				
Max. acceleration/deceleration		[m/s ²]	50	50	50	50				
Repeatability		[mm/m]	±0.05	±0.05	±0.05	±0.05				
Max. standard s	stroke length	[mm]	5760 ²⁾	5700 ²⁾	5600 ²⁾	5500 ²⁾				

¹⁾ up to 10 m/s on request

²⁾ longer strokes on request

Max Spe	Aaximum Permissible Torque on Drive Shaft Speed / Stroke													T2	
OSP-E20BHD OSP-E25BHD OSP-E32BHD OSP-E50BHI											ID				
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Moment [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1	11	1	11	1	31	1	31	1	71	1	71	1	174	1	174
2	10	2	11	2	28	2	31	2	65	2	71	2	159	2	174
3	9	3	8	3	25)	3	31	3	59	3	60	3	153	3	138
4		4	7	4	23	4	25	4	56	4	47	4	143	4	108
5		5	5	5	22	5	21)	5	52	5	38	5	135	5	89

Important:

The maximum permissible moment on the drive shaft is the lowest value of the speedor stroke-dependent moment value.

Example above:

OSP-E25BHD, stroke 5 m, required speed 3 m/s from table T2 speed 3 m/s gives 25 Nm and stroke 5 m gives 21 Nm. Max. torque for this application is 21 Nm.

When sizing Bi-parting units: for ordering stroke see page 18.

Maximum Permis	ТЗ				
Series	Max. appli Fy[N]	ed load Fz[N]	Max. mome Mx	ents [Nm] My	Mz
OSP-E20BHD	1600	1600	21	150	150
OSP-E25BHD	2000	3000	50	500	500
OSP-E32BHD	5000	10000	120	1000	1400
OSP-E50BHD	12000	15000	180	1800	2500

Tightening for Clamp Hub

	-			
	20	25	32	50
BHD	—	9.5	17	40
BHDII	4.8	9.5	17	40
BV	4.8	9.5	—	—

Combined Loads

If the linear drive is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here. The maximum permissible loads must not be exceeded.

Equation for Com	Equation for Combined Loads							
Fy +	Fz +	Mx +	My	Mz ∽≤1				
Fy (max)	Fz (max)	Mx (max)	My (max)	Mz (max)				

The total of the loads must not exceed >1 under any circumstances.

ORIGA

Maximum Permissible Unsupported Length

Stroke Length

The stroke lengths of the linear drives are available in multiples of 1 mm up to 5700 mm.

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.

Allow an additional safety clear-ance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.

For advice, please contact your local PARKER-ORIGA technical support department.

* For Bi-parting version the max. load (F) is the total load of both carriers

 $F = F_{carrier 1} + F_{carrier 2}$

k = Max. permissible distance between

mountings/mid-section support for a given load F.

When loadings are below or up to the curve in the graph below the deflection will be max. 0.01 % of distance k.

* Note:

The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

Order stroke = required travel + 2 x safety distance.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local PARKER-ORIGA representative.

** Order stroke = required travel + KM min + 2 x safety distance

*** Order stroke = 2 x required travel + KM min + 2 x safety distance

Dimension Table [mm]

Series	A	в	С	E	GxH	J	K	М	S	۷	X	YxZZ	CE	CF	EC	EF	FB	FH	KF	KMmin	KM _{rec.}	KN	КО	KP	KR	KS	KT	KUxKJ
OSP-E50BHD	347	147	175	18	M6x12	288	43	49	124	90	60	M6x10	87	92.5	158	70	164	77	79.5	354	400	75	41	35	32 _{h7}	32 ^{H7}	144	M12x19
OSP-E20BHD	185	76.5	73	18	M5x8.5	155	21.1	27.6	67	51	30	M5x8	38	49	60	27	73	36	42.5	180	220	27	18	25	12h7	12 ^{H7}	65.7	M6x8
OSP-E25BHD	218	88	93	25	M5x10	178	21.5	31	85	64	40	M6x8	42	52.5	79	27	92	39.5	49	210	250	34	21.7	30	16 _{h7}	16 ^{H7}	82	M8x8
OSP-E32BHD	262	112	116	28	M6x12	218	28.5	38	100	64	40	M6x10	56	66.5	100	36	116	51.7	62	250	300	53	30	30	22 _{h7}	22 ^{H7}	106	M10x12
OSP-E50BHD	347	147	175	18	M6x12	288	43	49	124	90	60	M6x10	87	92.5	158	70	164	77	79.5	354	400	75	41	35	32 _{h7}	32 ^{H7}	144	M12x19
Other dimensions for KS and KB for special drive shafts on request – see order instructions)																												

Series OSP-E..BHD – with Integrated Planetary Gearbox (Option)

Performance Overview

Characteristics		Unit	Description		
Series			OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Ratio (1-stage)	i		3/5/10		
Max. axial load	F_{amax}	[N]	1550	1900	4000
Torsional rigidity (i=5)	C _{t.21}	[Nm/arcmin]	3.3	9	24
Torsional rigidity (i=3/10)	C _{t.21}	[Nm/arcmin]	2.8	7.5	20.5
Torsional backlash	J _t	[arcmin]		<12	
Linear motion per revolution of drive shaft		[mm]	220	280	360
Nominal input speed	n _{nom}	[min ⁻¹]	3700	3400	2600
Max. input speed		n _{1max}	[min ⁻¹]		6000
No-load torque at Nominal input speed	T ₀₁₂	[Nm]	<0.14	<0.51	<1.5
Lifetime		[h]		20 000	
Efficiency	η	[%]		>97	
Noise level (n ₁ =3000 min ⁻¹)	L _{PA}	[db]	<70	<72	<74

Dimensions

Dimension Table [mm] and additional Weight

Series	NA	NB	NC	Weight (Mass) [kg]
OSP-E25BHD	49	43	76	2.6
OSP-E32BHD	62	47	92	4.9
OSP-E50BHD	79.5	49.5	121	9.6

Integrated Planetary Gearbox

Features

- Highly compact and rigid solutio fully integrated in the drive cap housing
- Purpose designed for the BHD series.
- Available with three standard ratios (3, 5 and 10)
- Very low backlash
- A wide range of available motor flanges

Please contact your local PARKER-ORIGA technical support for available motor flanges.

For motors and controllers, see separate catalogue "Drive technology for electric linear drives OSP-E".

Material: Aluminium (AL-H) / Steel (St-H)

Standard Version:

• Gearbox on opposite side to carrier.

Note:

When ordering, specify model/type of motor and manufacturer for correct motor flange.

Linear Drive with Toothed Belt

and Integrated Roller Guide

Series OSP-E..BHD Size 25, 32, 50

Standard Versions

- Toothed Belt Drive with integrated Recirculating Ball Bearing Guide
- Drive Shaft with clamp shaft or plain shaft
- Choice of motor mounting side
- Dovetail profile for mounting of accessories and the drive itself

Options

- Tandem version for higher moments
- Bi-parting version for synchronised movements
- Integrated planetary gearbox
- Drive shaft with
- clamp shaft and plain shaft
- hollow shaft with keyway
- Special drive shaft versions on request

Cha	racteristics			
Cha	racteristics	Symbol	Unit	Description
Gen	eral Features			
Seri	es			OSP-EBHD
Name				Linear Drive with Toothed Belt and integrated Roller Guide
Mounting				see drawings
Ambient Temperatur range		$\stackrel{\vartheta_{\text{min}}}{\vartheta_{\text{max}}}$	°C °C	-30 +80
Weight (Mass)			kg	seetable
Installation				In any position
	Slotted profile			Extruded anodized aluminium
	Toothed belt			Steel-corded polyurethane
	Pulley			Aluminium
a	Guide			Roller Guide
ateri	Guide rail			Aluminium
Ŝ	Track			high alloyed steel
	Roller cartridge			Steel rollers in aluminium housing
	Sealing band			Hardened, corrosion resistant steel
	Screws, nuts			Zinc plated steel
Mountings				Zinc plated steel and aluminium
Enca	apsulation class		IP	54

Weight (mass) and Inertia

Series	Weight (m at stroke 0 m	ass)[kg] ad per metre stroke	Moving mass	Inertia [x 10 ⁻⁶ kgm ²] at stroke 0 m ad per metre stroke		
OSP-E25BHD	3.8	4.3	1.0	984	197	
OSP-E32BHD	7.7	6.7	1.9	3498	438	
OSP-E50BHD	22.6	15.2	4.7	19690	1489	
OSP-E25BHD*	5.7	4.3	2.0	1805	197	
OSP-E32BHD*	11.3	6.7	3.8	6358	438	
OSP-E50BHD*	31.7	15.2	9.4	34274	1489	

*Version: Tandem and Bi-parting (Option)

Installation Instructions

Use the threaded holes in the end cap for mounting the linear drive. Check if mid-section supports are needed using the maximum allowable unsupported length graph on page 17. At least one end cap must be secured to prevent axial sliding when midsection support is used.

Maintenance

All moving parts are lifetime-lubricated. Depending on operating conditions, inspection of the linear drive is recommended after 12 months or 3000 km operation. Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

(T1)

(T2)

Performance Overview

					\bigcirc
Characteristics	Unit Description				
Series			OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Max. speed		[m/s]	10	10	10
Linear motion pe drive shaft	er revolution	[mm]	180	240	350
Max. rpm. drive	shaft	[min ⁻¹]	3000	2500	1700
Max. effective	< 1 m/s:	[N]	1070	1870	3120
action force F_{A}	1-3 m/s:	[N]	890	1560	2660
at speed	> 3-10 m/s:	[N]	550	1030	1940
No-load torque [Nm]	1.2	2.2	3.2	
Max. acceleratio	n/deceleration	[m/s ²]	40	40	40
Repeatability		[mm/m]	±0.05	±0.05	±0.05
Max. standard s	troke length	[mm]	7000	7000	7000

Maximum Permissible Torque on Drive Shaft Speed and Stroke

Oper	Ju unu	0	•								\sim
	OSP-E	25BH	D		OSP-	E32BH	ID	OSP-E50BHD			
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1 2 3 4 5 6 7 8 9 10	31 28 23 23 22 21 19 18 17 16	1 2 3 4 5 6 7	31 31 25 (21) 17 15	1 2 3 4 5 6 7 8 9 10	71 65 59 56 52 50 47 46 44 39	1 2 3 4 5 6 7	71 71 60 47 38 32 28	1 2 3 4 5 6 7 8 9 10	174 159 153 143 135 132 126 120 116 108	1 2 3 4 5 6 7	174 174 138 108 89 76 66

Important:

The maximum permissible moment on the drive shaft is the lowest value of the speedor stroke-dependent moment value.

Example above:

OSP-E25BHD, stroke 5 m, required speed 3 m/s from table T2 speed 3 m/s gives 25 Nm and stroke 5 m gives 21 Nm. Max. torque for this application is 21 Nm.

When sizing Bi-parting units: for ordering stroke see page 23.

Maximum Permissible Loads									
Series	Max. applied load Fy, Fz [N]	ents [Nm] My	Mz						
OSP-E25BHD	986	11	64	64					
OSP-E32BHD	1348	19	115	115					
OSP-E50BHD	3704	87	365	365					

Tightening for Clamp Hub

	20	25	32	50
BHD	—	9.5	17	40
BHDII	4.8	9.5	17	40
BV	4.8	9.5	—	—

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended:

- 1. Determination of the lever arm length I_x, I_y and I_z from m to the center axis of the linear drive.
- 2. Calculation of the load F_x or F_y to the carrier caused by m_e $F=m_e\cdot g$
- 3. Calculation of the static and dynamic force F_A which must be transmitted by the toothed belt. $F_{A(horizontal)} = F_a + F_0$

$$= m_{g} \cdot a + M_{o} \cdot 2\pi / U_{ZR}$$
$$F_{A(vertical)} = F_{g} + F_{a} + F_{o}$$

$$= m_{q} \cdot g + m_{q} \cdot a + M_{0} \cdot 2\pi / U_{z}$$

- 4. Calculation of all static and dynamic bending moments M_x , M_y and M_z which occur in the application $M = F \cdot I$
- 5. Selection of maximum permissible loads via Table T3.
- 6. Calculation and checking of the combined load, which must not be higher than 1.
- 7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
- 8. Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

- l = distance of a mass in the x-, y- and z-direction from the guide [m]
- m_e = external moved mass [kg]
- m_{LA} = moved mass of linear drive [kg]
- $m_{g} = total moved mass$ $(m_{e} + m_{LA}) [kg]$
- F_{x/y} = load excerted on the carrier in dependence of the installation position [N]
- F_A = action force [N]
- $M_0 = no-load torque [Nm]$
- U_{ZR} = circumference of the pulley (linear movement per revolution) [m]
- g = gravity [m/s²]
- a_{max.} = maximum acceleration [m/s²]

Maximum Permissible Unsupported Length

Stroke Length

The stroke lengths of the linear drives are available in multiples of 1 mm up to 5700 mm.

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.

Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm. The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.

For advice, please contact your local PARKER-ORIGA technical support department.

- * For the bi-parting version the maximum load (F) complies with the total of the load at both carriers. $F = F_{carriage 1} + F_{carriage 2}$
- k = Maximum permissible distance between mountings/mid-section support for a given load F.

If the loads are below or up to the curve in the graph the deflection will be max. 0.01 % of distance k.

Combined Loads

If the linear drive is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here. The maximum permissible loads must not be exceeded.

Equatation for Combined Loads

Fy Fz Mx My Mz	
++++≦1	
Fy (max) Fz (max) Mx (max) My (max) Mz (max)	

The total of the loads must not exceed >1 under any circumstances.

Maximum Permissible Unsupported Length – Placing of Mid-Section Support

Linear Drive with Toothed Belt and Integrated Roller Guide - Basic Unit Series OSP-E..BHD Drive Shaft versions with Order stroke** А A clamp shaft - plain shaft or ØKR G x H (8x) - clamp shaft with plain shaft (Option) ĉ Ю 5 ØKN в В \$ H KF Y x ZZ Mounting holes for motor flange or external planetary gearbox ¹⁾ .1 (10 threads) X (4x) FB > KU x KJ (4x) Hollow shaft with keyway (Option) ØKS V Dimension table [mm] KU x KJ (4x) Series KB KC KL KΤ KUxKJ ¹⁾ Note: The mounting holes for the coupling housing / motor OSP-E25BHD 16^{H7} 5 82 18.3 M8x8 flange / gearbox are located on the opposite side to the carrier (motor mounting standard). OSP-E32BHD 22H7 24.8 6 106 M10x12 They also can be located on the same side as the **OSP-E50BHD** 32H7 35.3 10 144 M12x19 carrier (motor mounting 180° standard).

* Note:

The mechanical end position must not be used as a mechancial end stop.

Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm. Order stroke = required travel + 2 x safety distance.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local PARKER-ORIGA representative.

** Order stroke = required travel + KM min + 2 x safety distance

*** Order stroke = 2 x required travel + KM min + 2 x safety distance

Dimension Table [mm]

Series	A	В	С	Е	GxH	J	Κ	М	S	۷	X	YxZZ	CE	CF	EC	EF	FB	FH	KF	KM _{min}	KM _{rec.}	KN	ко	KP	KR	KS	КΤ	KUxKJ
OSP-E25BHD	218	88	93	25	M5x10	178	21.5	31	85	64	40	M6x8	42	52.5	79	27	92	39.5	49	210	250	34	21.7	30	16 _{h7}	16 ^{H7}	82	M8x8
OSP-E32BHD	262	112	116	28	M6x12	218	28.5	38	100	64	40	M6x10	56	66.5	100	36	116	51.7	62	250	300	53	30	30	22 _{h7}	22 ^{H7}	106	M10x12
OSP-E50BHD	347	147	175	18	M6x12	263	43	49	124	90	60	M6x10	87	92.5	158	70	164	77	79.5	295	350	75	41	35	32 _{h7}	32 ^{H7}	144	M12x19

(Other dimensions for KS and KB for special drive shafts on request - see order instructions.)

Vertical Linear Drive with Toothed Belt and Integrated Recirculating Ball Bearing Guide Series OSP-E..BV

Contents

Description	Page
Overview	25-28
Technical Data	29-31
Dimensions	32-33

() ORIGA

TOOTHED BELT DRIVE FOR VERTICAL MOVEMENTS IN MULTI-AXIS SYSTEMS

The OSP-E..BV vertical linear drive with toothed belt and integrated recirculating ball bearing guide has been specially developed for lifting movements in the Z-axis. The especially low vibration OSP-E..BV vertical drive in combination with the heavy duty series OSP-E..BHD meets the highest demands in portal and handling applications.

Vertical Linear Drive with Toothed Belt and integrated Recirculating Ball Bearing Guide

Advantages

- Fixed drive head for low moving mass
- Integrated recirculating ball bearing guide for high bending moments
- Magnetic switch set fo contactless position sensing
- Easy to install
- Low maintenance

Features

- High acceleration and speed
- Drive Shaft versions with clamp shaft or plain shaft

Toothed belt tensioning end

- Power transmission by toothed belt
- Moving axis profile
- Complete motor and control packages

Carrier with recirculating ball bearing system

Precision guide rail made of steel

Toothed belt

To simplify design work OSP-E system CAD files are available, which are compatible with most common CAD systems

SERIES OSP-E, VERTICAL LINEAR DRIVE WITH TOOTHED BELT AND INTEGRATED RECIRCULATING BALL BEARING GUIDE

"CLAMP SHAFT AND PLAIN SHAFT"

OR "DOUBLE PLAIN SHAFT"

e.g. for parallel operation of two

Z-axes with an intermediate drive

STANDARD VERSION OSP-E...BV

Pages 29 & 30

Standard drive head with clamp shaft or tenon and integrated recirculating ball bearing guide with two carriers. Choice of side on which gearbox or motor is to be mounted.

Drive Shaft with Clamp Shaft

DRIVE SHAFT

shaft.

Drive Shaft with Double Plain Shaft

ACCESSORIES

MOTOR MOUNTINGS

Page 121 For connection of gearbox or motor direct to drive shaft with clamp shaft, or with a motor coupling to drive shaft with plain shaft.

MAGNETIC SWITCHES SET

Page 33

Magnetic switches with connector, mounting rail and magnets for contactless sensing of the end positions. Cable (suitable for cable chain) can be ordered separately in 5 m, 10 m or 15 m length.

MULTI-AXIS SYSTEMS Page 86

For modular assembly of linear drives up to multi-axis systems.

OPTIONS

TANDEM

Pages 29 & 30 Additional drive head and two additional carriers for higher bending moments.

HOLLOW SHAFT WITH KEYWAY For direct connection of gearbox or motor with keyway.

Ö ORIGA

Cł	Characteristics								
Characteristics		Symbol	Unit	Description					
Ge	eneral Features								
Se	ries			OSP-EBV					
Name				Vertical linear drive with toothed Belt and integrated recirculating ball bearing guide					
Мо	ounting			Seedrawings					
Temperature range		$ec{\vartheta}_{min} \ ec{\vartheta}_{max}$	°C ℃	-30 +80					
Weight (mass)			kg	Seetable					
Installation				vertical					
	Profile			Extruded anodized aluminium					
	Toothed belt			Steel-corded polyurethane					
М	Pulley			Aluminium					
a t	Guide			Recirculating ball bearing guide					
e r i	Guide rail			Hardened steel rail with high precision, accuracy class N					
a I	Guide carrier			Steel carrier with integrated wiper system, grease nipples, preloaded 0.08 x C, accuracy class N					
	Screws, nuts			Zinc plated steel					
En	capsulating class		IP	20					

Weight (mass) and Inertia

Series	Total weigh (Mass) [kg]	t	Moving m [kg]	ass	Inertia [x 10 ⁻⁶ kgm ²]			
	At stroke 0 m	Drive head	At stroke 0 m	Add per metre stroke	At Stroke 0 m	Add per metre stroke	Add per kg mass	
OSP-E20BV	3.4	1.9	1.6	4.0	486	1144	289	
OSP-E25BV	7.7	5.3	2.4	4.4	1695	2668	617.5	
OSP-E20BV*	5.3	2 x 1.9	1.6	4.0	533	1144	289	
OSP-E25BV*	13	2 x 5.3	2.4	4.4	1915	2668	617.5	

* Version: Tandem (Option)

Installation Instructions

Make sure that the OSP-E..BV is always operated with a brake on the drive side. For the mounting of the external mass to be moved there are threaded holes in the end caps. Before mounting, check the correct center of gravity distance from the table onpage 31.

Mount the external mass on the toothed belt fixed end, so that the belt tension can be checked and adjusted at the toothed belt tensioning end without dismantling.

Maintenance

Depending on operating conditions, inspection of the linear drive is recommended after 12 months or 3000 km operation. Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

Vertical Linear Drive with Toothed Belt and Integrated Recirculating Ball Bearing Guide

Series OSP-E..BV Size 20, 25

Standard Version:

- Toothed Belt drive with integrated recirculating ball bearing guide
- Drive shaft with clamp shaft or plain shaft
- Choice of motor mounting side

Options:

- Tandem version for higher momentsDrive shaft with
- clamp shaft and plain shaft or double plain shaft
- hollow shaft with keyway
- Special drive shaft versions on request.

ORIGA

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended:

- 1. Determination of the lever arm length I_x , I_y and I_z from m_e to the center axis of the linear drive.
- 2. Calculation of the static and dynamic force F_A which must be transmitted by the toothed belt. $FA = F_g + F_a + F_0$ $= m_g \cdot g + m_g \cdot a + M_0 \cdot 2\pi / U_{ZR}$
- 3. Calculation of all static and dynamic moments M_x , M_y and M_z which occur in the application. $M = F \cdot I$
- 4. Selection of maximum permissible loads via Table T3.
- 5. Calculation and checking of the combined load, which must not be higher than 1.
- 6. Checking of the maximum moment that occurs at the drive shaft in Table T2.
- 7. Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

- I = distance of a mass in the x-, y- and z-direction from the guide [m]
- m_e = external moved mass [kg]
- \mathbf{m}_{LA} = moved mass of linear drive [kg]
- $\mathbf{m}_{g} = \text{total moved mass} \ (m_{e} + m_{LA}) \text{ [kg]}$
- $\mathbf{F}_{\mathbf{A}}$ = action force [N]
- $\mathbf{M}_{0} = \text{no-load torque [Nm]}$
- U_{zR} = circumference of the pulley (linear movement per revolution) [m]
- $\mathbf{g} = \text{gravity} [\text{m/s}^2]$
- $\mathbf{a}_{max.}$ = maximum acceleration [m/s²]

Performance Overview				(T1)
Characteristics	Unit	Description		
Series		OSP-E20BV	OSP-E25BV	
Max.Speed	[m/s]	3.0	5.0	
Linear motion per revolut of drive shaft	[mm/U]	108	160	
Toothed Belt		35ATL3	40 ATL5	
Max. rpm. drive shaft	[min ⁻¹]	1700	1875	
Max effective	1m/s	[N]	650	1430
action force F _A	1-2m/s	[N]	450	1200
atspeed	>3-5m/s	[N]	-	1050
No-load torque ²⁾		[Nm]	0.6	1.2
Max.acceleration/deceler	ration	[m/s ²]	20	20
Repeatability	+/- [mm/m]	0.05	0.05	
Max. standard stroke leng	[mm]	1000	1500	
Max. recomended permis	sible mass ³⁾	[kg]	10	20

¹⁾ Longer strokes on request and only with profile stiffening

²⁾ As a result of static friction force

³⁾ vertical

Max. Permissible Torque on Drive Shaft Speed / Stroke										
C)SP-E-20)BV		OSP-E-25BV						
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]			
1	19	1	17	1	36	1	36			
2	17	2	10.5	2	30	2	36			
3	15.5			3	30					
				4	28					
				5	27					

Important:

The maximum permissible moment on the drive shaft is the lowest value of the speed- or stroke-dependent moment value.

Example above:

OSP-E25BV required speed v = 3 m/s and stroke = 1 m.

Accordingly Table T2 shows permissible moments of 30 Nm for the speed and 36 Nm for the stroke. Therefore the maximum moment at the drive shaft is determined by the speed and must not exceed 30 Nm.

Tightening for Clamp Hub

	-			
	20	25	32	50
BHD	—	9.5	17	40
BHDII	4.8	9.5	17	40
BV	4.8	9.5	—	_

Ta

Maximum Permissible Loads

Series	Max.applied	load	Max.moments				
	Fy[N]	Fz[N]	Mx[Nm]	My [Nm]	Mz[Nm]		
OSP-E20BV	1600	1600	20	100	100		
OSP-E25BV	2000	3000	50	200	200		

Equation for Combined Loads											
Fy	Fz	Mx	Му	Mz							
	- + +	·	+ +	- <u> </u>							
Fy (max)) Fz (max)	Mx (max)	My (max)	Mz (max)							

The total of the loads must not exceed >1 under any circumstances.

Distance of Center of Gravity of External Mass from Mid-Point of Drive **OSP-E20BV OSP-E25BV** Lever arm I, Max. permissible Lever arm I Max. permissible Mass [kg] [mm] acceleration/ [mm] acceleration/ deceleration [m/s²] deceleration [m/s²] > 3 to 5 0 20 50 20 >5 to 10 0 20 40 20 >10 to 15 35 20 ---30 15 > 15 to 20 _

Combined Loads

If the linear drive is subjected to several forves, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

() ORIGA

Catalog 0950 Dimensions

* Note:

The mechanical end position must not be used as a mechancial end stop.

Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm. Order stroke = required travel + 2 x safety distance.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local PARKER-ORIGA representative.

** Order stroke = required travel + KM min + 2 x safety distance.

OSP-E Series Electric Linear Drives and Guides Toothed Belt

DimensionTable	Dimension Table [mm]															
Series	Α	В	С	Е	GxH	J	К	М	S	v	w	Х	Y	CD	CE	CF
OSP-E20BV	148	22	93	25	M5x12	139	21.1	102.3	68	51	40	120	M6	40.4	34	123.3
OSP-E25BV	210	22	93	25	M5x12	175	21.5	133.5	87	70	18	158	M6	49	42	154.5

Series	EC	EF	FB	FH	KDxKX	KF	KM _{min}	KN	ко	KS	КТ	KUxKJ	KV	KW	ZZ
OSP-E20BV	59	21	73	36.0	-	61.3	155	27	16	12 ^{H7}	46.5	M6x10	36	-	10
OSP-E25BV	79	27	92	39.5	M6x16	76	225	34	21.5	16 ^{H7}	58	M8x16	46	36	10

*** The mounting holes for the coupling housing are on the motor-mounting side. Therefore please ensure that the motormounting side is correctly stated when ordering the drive.

(For special drive shafts, other dimensions for KS and KB are available on request - see Order Instructions.)

Contactless Position Sensing with Magnetic Switches

The magnetic switch set, comprising two magnetic switches, a mounting rail and two magnets, is for contactless sensing of the end positions. The mounting rail and magnetic switches are mounted on the drive head and the magnets are mounted in the dovetail slot on the profile.

The magnetic switches are the RS-S type (connector version). For the connecting cable PARKER-

ORIGA recommends the use of cable suitable for cable chain.

Order instructions

Description	Ident-No.
Magnetic switch set, obtaining: - 2 magnetic switches - KL3087, TypRS-S - 1 mounting rail - 2 magnets	15886
Connecting cable, suitable for cable chain	
5 m	KL3186
10 m	KL3217
15 m	KL3216

() ORIGA

Linear Drive with Toothed Belt Series OSP-E..B

Contents

Description	Page
Overview	35-38
Technical Data	39-43
Dimensions	44-45

ORIGA

Ball bearing

Pulley

Threaded mounting holes

ELECTRIC LINEAR DRIVE FOR POINT-TO-POINT APPLICATIONS

A completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

Linear Drive with Toothed Belt and internal Plain Bearing Guide

Advantages

- Precise path and position control
- High speed operation
- Easy installation
- Low maintenance
- Ideal for precise point-topoint applications

Features

- Integrated drive and guidance system
- Tandem configuration with increased carrier distance for higher moment supports
- Long available strokes
- Complete motor and
 - control packages
- Diverse range of accessories and mountings
- Bi-parting and special options available

To simplify design work OSP-E system CAD files are available, which are compatible with most common CAD systems

OSP-E Series Electric Linear Drives and Guides Toothed Belt Drive

Ö ORIGA

SERIES OSP-E, LINEAR DRIVE WITH TOOTHED BELT AND INTERNAL PLAIN BEARING GUIDE

STANDARD VERSIONS OSP-E..B

Pages 39 & 40

Carrier with internal guidance and magnet packet for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

Ì⊕Ì

Standard

Standard

Option

DRIVE SHAFT VERSIONS

double plain shaft (Option)
e.g. to drive two linear drives

- Plain shaft or

in parallel.

OPTIONS

Pages 39 & 40

BI-PARTING Pages 39 & 40

For higher moment support.

For perfectly synchronised bi-parting movements.

TANDEM

ACCESSORIES

END CAP MOUNTING

Page 129 For end-mounting of the drive.

MID-SECTION SUPPORT

Page 134

For supporting long drives or mounting the linear drive on the dovetail grooves.

CLEVIS MOUNTING Page 140 Carrier with tolerance and parallelism compensation to drive external linear guides.

INVERSION MOUNTING

Page 142 The inversion mounting, mounted on

MAGNETIC SWITCHES SERIES RS AND ES

Page 153 For contactless position sensing of end stop and intermediate carrier positions.

ORIGA

Characteristics			
Characteristics	Symbol	Unit	Description
General Features			
Series			OSP-EB
Name			Linear Drive with Toothed Belt
Mounting			Seedrawings
Temperature range	$artheta_{min} \ artheta_{max}$	°C° °	-30 +80
Weight (mass)		kg	Seetable

	9(
Insta	allation			Seetable
	Slotted profile			Extruded anodized aluminium
	Toothed belt			Steel-corded polyurethane
	Pulley			Aluminium
erial	Guide bearings			Low friction plastic
Mate	Sealing band			Hardened corrosion resistant steel
2	Screws, nuts			Zinc plated steel
	Mountings			Zinc plated steel and aluminium
Enca	apsulation class	IP	54	

Weight (mass) and Inertia

Series	at stroke 0 m	Weight (mass) ad per meter stroke	[kg] moving mass	Inertia [x 10 ⁻⁶ kgm ²] at stroke 0 m ad per meter stroke				
OSP-E25B	0.9	1.6	0.2	25.3	6.6			
OSP-E32B	1.9	3.2	0.40	43.3	10			
OSP-E50B	5.2	6.2	1.0	312.2	45			
OSP-E25B*	1.2	1.6	0.5	48	6.6			
OSP-E32B*	2.3	3.2	0.8	83	10			
OSP-E50B*	6.3	6.2	2.1	585	45			

* Version: Tandem and Bi-parting (Option)

Installation Instructions

Use the threaded holes in the end cap for mounting the linear drive. See if mid-section supports are needed using the maximum allowable unsupported length graph on page 41. At least one end cap must be secured to prevent axial sliding when midsection support is used. When the linear drive is moving an externally guided load, the clevis

mounting must be used (see pages 140-141).

The linear drives can be fitted with the standard carrier mounting facing in any direction.

modifications To prevent contamination such as fluid ingress, the drive should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side (see page 142).

Maintenance

All moving parts are long-term lubricated for a normal operational environment. PARKER-ORIGA recommends a check and lubrication of the linear drive, and if necessary a change of the toothed belt and wear parts, after an operation time of 12 months of operation or 3 000 km travel of distance.

Additional greasing is easily done by using nipples in the slotted profile. Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

Linear Drive with **Toothed Belt** Series OSP-E...B Size 25, 32, 50

Standard Versions:

- Standard carrier with internal plain bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Position of Drive Shafts

Options:

- Tandem-Version Bi-parting version for
- synchronized movements
- · Drive shaft with double plain shaft

right to introduce technical

The

is reserve

() ORIGA

Sizing Performance **Overview Maximum Loadings**

Sizing of Linear Drive

The following steps are recommended for selection:

- 1. Required acceleration is shown in graphs on page 42.
- 2. Required torque is shown on page 43.
- 3. Check that maximum values in the table 3 are not exceeded
- Drive shaft by using table T2. (Pay attention to note under table) If value is lower than required. overview the moving profile or select if possible a bigger unit.
- 5. Before sizing and specifying the motor, the average torque must be calculated using the cycle time of the application.
- 6. Check that the maximum allowable unsupported length is not exceeded (see page 41).

Performance Overview

Characteristics		Unit	Description		
Size			OSP-E25B	OSP-E32B	OSP-E50B
Max. speed		[m/s]	2	3	5
Linear motion pe drive shaft	er revolution,	[mm]	60	60	100
Max. rpm drive s	shaft	[min ⁻¹]	2 000	3 000	3 000
Max. effective	< 1 m/s:	[N]	50	150	425
action force	1- 2 m/s:	[N]	50	120	375
F _A at speed	> 2 m/s:	[N]	-	100	300
No-load torque		[Nm]	0.4	0.5	0.6
Max. acceleratio	n/deceleration	[m/s ²]	10	10	10
Repeatability		[mm/m]	±0.05	±0.05	±0.05
Max. stroke leng	th OSP-EB	[mm]	3000 5000		5000
Max. stroke leng	th OSP-EB*	[mm]	2 x 1500	2 x 2500	2 x 2500

* Bi-parting version

Maxi	Maximum Permissible Torque on Drive Shaft										
Spee	Speed / Stroke										
	OSP-I	E25B			OSP-I	E32B			OSP-	E50B	
Speed	Torque	Stroke	Torque	Speed.	Torque	Stroke	Torque	Speed.	Torque	Stroke	Torque
[m/s]	[Nm]	[m]	[Nm]	[m/s]	[Nm]	[m]	[Nm]	[m/s]	[Nm]	[m]	[Nm]
1 2	0.9 0.9	1 2 3	0.9 0.9 0.9	1 2 3	2.3 2.0 (1.8)	1 2 3 4 5	2.3 (2.3) 2.3 2.3 1.8	1 2 3 4 5	10.0 9.5 9.0 8.0 7.5	1 2 3 4 5	10.0 10.0 9.0 7.0 6.0

Important:

The maximum permissible moment on the drive shaft is the lowest value of the speed- or stroke-dependent moment value.

Example above:

OSP-E32B stroke 2 m. required speed 3 m/s:

From table T2: speed 3 m/s gives 1.8 Nm and stroke 2 m gives 2.3 Nm. Max. torque for this application is 1.8 Nm.

Maximum Perr	nissible Loads			ТЗ
Series	Max. applied load Fz [N]	Max. mome Mx	nts [Nm] My	Mz
OSP-E25B	160	2	12	8
OSP-E32B	300	8	25	16
OSP-E50B	850	16	80	32
OSP-EB Bi-partional	The maximum load F must two carriers.	t be equally c	listributed a	mong the

Equation for Combined Loads

The total of the loads must not exeed >1 under any circumstances.

Forces, loads and moments Мx MyC The distance I (lx, ly, lz) $M = F \cdot I[Nm]$ for calculation of $M_{x} = M_{x \text{ stically}} + M_{x \text{ dynamically}}$ $M_{y}^{x} = M_{y \text{ statically}}^{x \text{ statically}} + M_{y}^{x \text{ dynamically}} \qquad \text{moments relates to the center axis of the linear}$ moments relates to the $M_z^{y} = M_z^{y} \text{ statically} + M_z^{y} \text{ dynamically}$

drive

Combined Loads

If the linear drive is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here

The maximum permissible loads must not be exceeded.

ORIGA

Catalog 0950 Technical Data

Maximum Permissible Unsupported Length

Stroke Length

The stroke lengths of the linear drives are available in multiples of 1 mm up to max. OSP-E25B: 3 m / 2 x 1.5 m * OSP-E32B: 5 m / 2 x 2.5 m * OSP-E50B: 5 m / 2 x 2.5 m * * Version: Bi-partional

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For advise, please contact your local PARKER-ORIGA technical support department.

When mechanical stops are required, external shock absorbers should be used (see separate data sheet). Align the center line of the shock absorber as closely as possible with the object's center of gravity (see separate data sheet).

Mounting on the Drive Shaft

Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupler or pulley, a steadying block should be used.

Pulley

Minimum allowable number of teeth Z (AT5) at maximum applied torque.

Required Acceleration

Distance / Time Graph

Using the required travel distance and total time, the adjacent graphs show the required acceleration based on maximum speed.

The graphs assume that acceleration and deceleration are equal.

Please note that specifying nonessential high acceleration or short cycle time will result in an oversized motor.

Parker _{Oloriga}

Required Torque / Mass

Using the known mass, the direction of the application and the required acceleration from the distance-time graphs, the linear drive can be sized and the required torque is shown in the adjacent graphs. Mass in graphs = Load + moving mass of the linear drive (according to the weight chart on page 39).

Please note:

When using an additional guide, please add the mass of the carriage to the total moving mass.

ORIGA

* Note:

The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

Order stroke = required travel + 2 x safety distance.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local PARKER-ORIGA representative.

** Order stroke = required travel + KM min + 2 x safety distance

*** Order stroke = 2 x required travel + KM min + 2 x safety distance

Standard Carrier Series OSP-E..B

Dimension Table [mm]													
Series	Α	В	С	E	GxH	J	К	М	S	V	X	Y	CF
OSP-E25B	125	22	41	27	M5 x 10	117	21.5	31	33	25	65	M5	52.5
OSP-E32B	150	25	52	36	M6 x 12	152	28.5	38	36	27	90	M6	66.5
OSP-E50B	200	25	87	70	M6 x 12	200	43	49	36	27	110	M6	92.5

Series	FB	FH	КВ	КС	KE	KF	KG	КН	KJ	KL	KM _{min}	KM _{empf.}	KP x H	ZZ
OSP-E25B	40	39.5	10 _{j6}	15	22	37	57	30	19 ^{H7}	24	130	190	M5 x 10	8
OSP-E32B	52	51.7	10 _{j6}	18	17.5	36.5	61	38	26 ^{H7}	26	170	230	M6 x 12	10
OSP-E50B	76	77	16 _{h8}	32	23.5	48.5	85	50	40 ^{H7}	34	220	320	M8 x 12	10

Linear Drive with Ball Screw Drive Series OSP-E..SB

Contents

Description	Page
Overview	47-50
Technical Data	51-55
Dimensions	56-57

() ORIGA

Threaded holes

ELECTRIC LINEAR DRIVE FOR HIGH ACCURACY APPLICATIONS

A completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

Linear Drive with Ball Screw Drive and Internal Plane Bearing Guide

Advantages

Accurate path and

position control

High force output

Excellent slow speed

Ideal for precise traverse

Easy installation

characteristics

operations

Features

- Integrated drive and guidance system
- Complete motor and control packages
- Diverse range of accessories and mountings
- Optimal screw pitches (5, 10, 25 mm)

To simplify design work OSP-E system CAD files are available, which are compatible with most common CAD systems

The dovetailed mounting rails of the new linear drive expand its function into that of a universal system carrier. Modular system components are simply clamped on.

Catalog 0950 Options & Accessories

SERIES OSP-E, LINEAR DRIVE WITH BALL SCREW DRIVE AND INTERNAL PLAIN BEARING GUIDE

STANDARD VERSION OSP-E..SB

Page 51

Standard carrier with internal guidance and integrated magnet set for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

BALL SCREW PITCH

The ball screws spindles are available in various pitches: OSP-E25SB: 5 mm OSP-E32SB: 5, 10 mm OSP-E50SB: 5, 10, 25 mm

OPTIONS

TANDEM Page 56 For higher moment support.

CLEAN ROOM certified to DIN EN ISO 14644-1

DISPLACEMENT MEASURING SYSTEM SFI-plus Page 157 Incremental measuring system with

practically relevant resolution.

ACCESSORIES

MOTOR MOUNTINGS Page 123

END CAP MOUNTING

Page 129 For end-mounting of the drive.

MID-SECTION SUPPORT

Page 134 For supporting long drives or mounting the linear drive on the

CLEVIS MOUNTING

Page 140 Carrier with tolerance and parallelism compensation to drive external linear quides.

INVERSION MOUNTING

Page 142

The inversion mounting, mounted on the carrier, transfers the driving force to the opposite side, e.g. for dirty environments.

MAGNETIC SWITCHES SERIES RS AND ES

Page 153 For contactless position sensing of end stop and intermediate carrier positions.

The right to introduce technical modifications is reserved

() ORIGA

Characteristics
Characteristics

		_	_	
Cha	racteristics	Symbol	Unit	Description
Gen	eral Features			
Serie	es			OSP-ESB
Nam	e			Linear Drive with Ball Screw Drive
Mou	nting			Seedrawings
Temperature Range		$artheta_{\min}^artheta_{\max}^artheta$	℃ ℃	-20 +80
Weight (mass)			kg	Seetable
Installation				In any position
	Slotted profile			Extruded anodized aluminium
	Ball screw			Hardened steel
rial	Ball screw nut			Hardened steel
late	Guide bearings			Low friction plastic
2	Sealing band			Hardened, corrosion resistant steel
	Screws, nuts			zinc plated steel
	Mountings			zinc plated steel and aluminium
Enca	psulation class		IP	54

Linear Drive with Ball **Screw Drive**

Series OSP-E..SB Size 25, 32, 50

Weight (mass) and Inertia

• •					
Series At stroke 0 m	Add per metre stroke	Weight (mass) [Moving mass	kg] At stroke 0 m	Inertia [x 10 ⁻⁶ kç Add per metre	gm²]
OSP-E25SB	0.8	2.3	0.2	2.2	11.3
OSP-E32SB	2.0	4.4	0.4	8.4	32
OSP-E50SB	5.2	9.4	1.2	84	225

Installation Instructions

Use the threaded holes in the free end cap and a mid-section support close to the motor end for mounting the linear drive.

See if mid-section supports are needed using the maximum permissible unsupported length graph on page 53. At least one end cap must be secured to prevent axial sliding when mid-section support is used.

When the linear drive is moving an externally guided load, the clevis mounting must be used (see pages 140-141).

The linear drives can be fitted with the standard carrier mounting facing in any direction.

To prevent contamination such as fluid ingress, the drive should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side (see page 142).

Maintenance

All moving parts are long-term lubricated for a normal operational environment. PARKER-ORIGA recommends a check and lubrication of the linear drive, and if necessary a change of wear parts, after an operation time of 12 months or 3000 km travel of distance. Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

Standard Versions:

- Standard carrier with internal plain bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Pitches of Ball Screw Spindle Type OSP-E25:5 mm Type OSP-E32: 5, 10 mm
- Type OSP-E50: 5, 10, 25 mm

Options:

- •Tandem-Version
- ·Clean room-version, according to DIN EN ISO 14644-1
- Displacement Measuring System SFI-plus (page 157)

51

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended for selection :

- 1. Recommended maximum acceleration is shown in graphs on page 54
- 2. Required torque is shown in graphs on page 55
- 3. Check that maximum values in the adjacent charts are not exceeded.
- 4.When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time of the application.
- 5. Check that the maximum allowable unsupported length is not exceeded (see page 53)

Combined Loads

If the linear drive is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

Performance Overview

Characteristics	Unit	Description						
Series		OSP-E25SB	OSP-E3	2SB	OSP-E50SB			
Pitch	[mm]	5	5	10	5	10	25	
Max. speed	[m/s]	0.25	0.25	0.5	0.25	0.5	1.25	
Linear motion per revolution drive shaft	[mm]	5	5	10	5	10	25	
Max. rpm, drive shaft	[min ^{-1]}	3 000	3 000		3 000			
Max. effective action force F_A	[N]	250	600		1 500			
Corresponding torque on drive shaft	[Nm]	0.35	0.75	1.3	1.7	3.1	7.3	
No-load torque	[Nm]	0.2	0.2	0.3	0.3	0.4	0.5	
Max. allowable torque on drive shaft	[Nm]	0.6	1.5	2.8	4.2	7.5	20	
Repeatability	[mm/m]	±0.05	±0.05 ±		±0.05	±0.05		
Max. Standard stroke length	[mm]	1100	2000 32		3200	3200		

Maximum Permissible Loads											
Series	Max. applied load [N] Fz	ax. applied load [N] Max. moments [Nm] Mx My									
OSP-E25SB	500	2	12	8							
OSP-E32SB	1 200	8	25	16							
OSP-E50SB	3 000	16	80	32							

The total of loads must not exceed >1 under any circumstances.

Catalog 0950 Technical Data

Maximum Permissible Unsupported Length

Stroke Length

The stroke lengths of the linear drives are available in multiples of 1 mm up to above maximum stroke lengths.

OSP-E25SB: max. 1100 mm OSP-E32SB: max. 2000 mm OSP-E50SB: max. 3200 mm

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop. Allow an additional safety clearance of minimum 25 mm at

both ends. The use of an AC motor with frequency converter normally requires a larder safety clearance than that required for servo systems. For advise, please contact your local PARKER-ORIGA technical support department.

When mechanical stops are required, external shock absorbers should be used (see separate catalogue). Align the centerline of the shock absorber as closely as possible with the object's center of gravity.

Mounting on the Drive Shaft

Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupling or belt wheel, a steadying block should be used.

Belt wheels

Minimum allowable number of teeth (AT5) and diameter of belt wheel at maximum applied torque.

Size	Min. Z	Min. Ø
OSP-E25SB	24	38
OSP-E32SB	24	38
OSP-E50SB	36	57

Maximum rpm / Stroke

At longer strokes the speed has to be reduced according to the adjacent graphs.

OSP-E Series Electric Linear Drives and Guides Ball Screw Drive

Performance as a function of the action force

Performance / Action force

The performance to be expected depends on the maximum required actions force of the application. An increase of the action force will lead to a reduced performance.

Distance / Time Graph

The adjacent graphs show travel distance and total time at maximum speed and recommended maximum acceleration. The graph assumes that acceleration and deceleration are equal.

Distance / Time Graph

() ORIGA

Catalog 0950 Technical Data

Required Torque / Mass

Using the known mass, the direction of the application and the recommended acceleration, the linear drive can be sized and the required torque is shown in the adjacent graphs.

Mass in graphs = Load + moving mass of the linear drive according to the weight chart (see table on page 51).

Please mind:

If an additional guide is used, mind the weight of the guide carriage.

Size OSP-E50SB, Pitch 10 mm Acceleration 4 m/s² Torque M [Nm] 5.0 4,0 - Kellicol Horizontal 3,0 2.0 1,0 0 50 200 250 300 100 150 Mass m [kg]

ORIGA

* Note:

The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 25 mm.

Order stroke = required travel + 2 x safety distance.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information, please contact your local PARKER-ORIGA representative.

** Order stroke = required travel + KM min + 2 x safety distance

Standard Carrier Series OSP-E..SB

Dimension table [mm]																					
Series	Α	В	С	Е	GxH	J	К	М	S	V	X	Y	CF	FB	FH	КВ	KD	KL	KM _{min}	KN	ZZ
OSP-E25SB	100	22	41	27	M5 x 10	117	21.5	31	33	25	65	M5	52.5	40	39.5	6 _{h7}	2	17	120	13	8
OSP-E32SB	125	25.5	52	36	M6 x 12	152	28.5	38	36	27	90	M6	66.5	52	51.7	10 _{h7}	2	31	165	20	10
OSP-E50SB	175	33	87	70	M6 x 12	200	43	49	36	27	110	M6	92.5	76	77	15 _{h7}	3	43	235	28	10

Linear Drive with Trapezoidal Screw Drive Series OSP-E..ST

Contents

Description	Page
Overview	59-62
Technical Data	63-66
Dimensions	67

ORIGA

ELECTRIC LINEAR DRIVE FOR INTERMITTENT APPLICATIONS

A completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

Linear Drive with Trapezoidal Screw Drive and Internal Plain Bearing Guide

Advantages

Features

- Accurate path and position control
- High force output
- Self-locking
- Excellent slow speed characteristics
- Easy installation
- Low maintenance
- Ideal for level regulation, lifting and other applications with intermittent operations

guidance system ■ Complete motor and

Integrated drive and

- control packages
- Diverse range of accessories and mountings
- Special options available

Corrosion resistant steel

Double row angular contact ball bearings

ORIGA

Carrier

To simplify design work OSP-E system CAD files are available, which are compatible with most common CAD systems

SERIES OSP-E, LINEAR DRIVE WITH TRAPEZOIDAL SCREW DRIVE AND INTERNAL PLAIN BEARING GUIDE

STANDARD VERSIONS OSP-E..ST

Pages 63 & 64

Standard carrier with internal guidance and integrated magnet set for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

ACCESSORIES

MOTOR MOUNTINGS

Page 123

END CAP MOUNTING

Page 130 For end-mounting of the actuator

MID-SECTION SUPPORT

Page 135 For supporting long drives or mounting the linear drive on the dovetail grooves.

CLEVIS MOUNTING

Page 140 Carrier with tolerance and parallelism compensation to drive external linear guides.

INVERSION MOUNTING

Page 142

The inversion mounting, mounted on the carrier, transfers the driving force to the opposite side, e.g. for dirty environments.

A3P154E00FAG0X

MAGNETIC SWITCHES SERIES RS UND ES

Page 153 For contactless position sensing of end stop and intermediate carrier positions.

ÖORIGA

Cha	Characteristics										
Cha	racteristics	Symbol	Unit	Description							
Gen	eral Features										
Seri	es			OSP-EST							
Nam	ne			Linear Drive with Trapezoidal Screw Drive							
Mou	nting			Seedrawings							
Temperature Range		$\overset{\vartheta_{\text{min}}}{\vartheta_{\text{max}}}$	°C °C	-20 +70							
Weight (mass)			kg	Seetable							
Installation				In any position							
	Slotted profile			Extruded anodized aluminium							
	Trapezoidal screw			Cold rolled steel							
rial	Drive nut			Thermoplastic polyester							
late	Guide bearings			Low friction plastic							
2	Sealing band			Hardened, corrosion restiant steel							
	Screws, nuts			zinc plated steel							
	Mountings			zinc plated steel and aluminium							
Enca	psulation class		IP	54							

Linear Drive with Trapezoidal Screw Drive

Series OSP-E..ST Size 25, 32, 50

Weight (mass) and Inertia

Series At stroke 0 m	Weight (mass)[Add per metre stroke	kg] Moving mass	At stroke 0 m	Inertia [x 10-6 k Add per metre	gm2]
OSP-E25ST	0.9	2.8	0.2	6	29.6
OSP-E32ST	2.1	5.0	0.5	21.7	81
OSP-E50ST	5.1	10.6	1.3	152	400

Installation Instructions

Use the threaded holes in the free end cap and a mid-section support close to the motor end for mounting the linear drive.

See if mid-section supports are needed using the maximum permissible unsupported length graph on page 65. At least one end cap must be secured to prevent axial sliding when mid-section support is used.

When the linear drive is moving an externally guided load, the clevis mounting must be used (see pages 140-141).

The linear drives can be fitted with the standard carrier mounting facing in any direction.

To prevent contamination such as fluid ingress, the drive should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side (see page 142).

Maintenance

All moving parts are long-term lubricated for a normal operational environment. PARKER-ORIGA recommends a check and lubrication of the linear drive, and if necessary a change of wear parts, after an operation time of 12 months or 300 km travel of distance. Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

Standard Versions:

- Standard carrier with internal plain bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Pitch of Trapezoidal Spindle: Type OSP-E25ST : 4 mm Type OSP-E32ST: 4 mm Type OSP-E50ST: 6 mm

Options:

- Displacement Measuring System SFI-plus (page 157)
- •Keyway

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended for selection :

- 1. Check that maximum values in the table T3 are not exceeded.
- 2. Check the maximum values in graph on page 66 are not exceeded.
- 3. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time of the application.
- 4. Check that the maximum allowable unsupported length is not exceeded (see page 65).

Performance Overview

Characteristics	Unit	Description						
Size		OSP-E25ST	OSP-E32ST	OSP-E50ST				
Pitch	[mm]	4	4	6				
Max. speed	[m/s]	0.1	0.1	0.15				
Linear motion per revolution drive shaft	[mm]	4	4	6				
Max. rpm, drive shaft	[min ^{-1]}	1500	1500	1500				
Max. effective action force F_A Corresponding torque on drive shaft	[N] [Nm]	600 1.35	1300 3.2	2 500 8.8				
No-load torque	[Nm]	0.3	0.4	0.5				
Max. allowable torque on drive shaft	[Nm]	1.55	4.0	9.4				
Self-locking force F ¹ _L	[N]	600	1300	2500				
Repeatability	[mm/m]	±0.5	±0.5	±0.5				
Max. Standard stroke length	[mm]	1100	2000	2500*				

¹⁾ Related to screw types Tr 16x4, Tr 20x4, TR 30x6 see data sheet 1.35.002E-1 – for inertia.

 For strokes longer than 2000 mm in horizontal apllications, please contact our customer support.

Combined Loads

If the linear drive is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

Maximum Permissible Loads									
Size	Max. applied load [N] Fz	Max. mome Mx	ents [Nm] My	Mz					
OSP-E25ST	500	2	24	7					
OSP-E32ST	1000	6	65	12					
OSP-E50ST	1500	13	155	26					

Equation for Combined Loads

Fz	Mx	My	Mz	
+	+	+	≤ 1	
Fz (max)	Mx (max)	My (max)	Mz (max)	

The total of the loads must not exceed >1 under any circumstances.

Maximum Permissible Unsupported Length – Placing of Mid-Section Support

Maximum Permissible Unsupported Length

Stroke Length

The stroke lengths of the linear drives are available in multiples of 1 mm up to the following maximum stroke lengths.

OSP-E25ST: max. 1100 mm OSP-E32ST: max. 2000 mm OSP-E50ST: max. 2500 mm * Other stroke lengths are available on request.

* For strokes longer than 2000 mm in horizontal applications, please contact our customer support

The end of stroke must not be used as a mechanical stop.

Allow an additional safety clearance of minimum 25 mm at both ends.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems.

For advise, please contact your local PARKER-ORIGA technical support department.

When mechanical stops are required, external shock absorbers should be used (see separate data sheet). Align the centerline of the shock absorber as closely as possible with the object's center of gravity.

Mounting on the Drive Shaft

Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupling or belt wheel, a steadying block should be used.

Belt wheels

Minimum allowable number of teeth (AT5) and diameter of belt wheel at maximum applied torque.

Size	Min. Z	Min. ø			
OSP-E25ST	24	38			
OSP-E32ST	24	38			
OSP-E50ST	36	57			

Maximum rpm / Stroke

At longer strokes the speed has to be reduced according to the adjacent graphs.

Performance / Action Force

The Linear Drives are designed for a 10% intermittent usage.

The performance to be expected depends on the maximum required actions force of the application. An increase of the action force will lead to a reduced performance.

Performance as a function of the action force

ORIGA

* NOTE:

The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 25 mm.

Order stroke = required travel + $2 \times \text{safety distance}$.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information, please contact your local PARKER-ORIGA representative.

Dimension Table	[mm]
-----------------	------

Series	Α	В	С	E	GxH	J	К	М	S	V	X	Y	CF	FB	FH	КВ	KD	KL	KN	ZZ
OSP-E25ST	100	22	41	27	M5 x 10	117	21.5	31	33	25	65	M5	52.5	40	39.5	6 _{h7}	2	17	13	8
OSP-E32ST	125	25.5	52	36	M6 x 12	152	28.5	38	36	27	90	M6	66.5	52	51.7	10 _{h7}	2	31	20	10
OSP-E50ST	175	33	87	70	M6 x 12	200	43	49	36	27	110	M6	92.5	76	77	15 _{h7}	3	43	28	10

Linear Drive with Ball Screw Drive and Piston Rod Series OSP-E..SBR

|--|

Description	Page
Overview	69-72
Technical Data	73-75
Dimensions	75

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com

Slotted profile with dovetail grooves

ELECTRIC LINEAR DRIVE FOR PRECISE AND HIGH SPEED POSITIONING **OF HIGH MASSES**

A completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

Linear Drive with Ball Screw Drive, Internal Plain Bearing Guide and Piston Rod

Advantages

- High output force
- Excellent running characteristics
- Accurate path and position control
- High levels of repeatability

Features

- Extending drive rod
- Ball screw spindle
- Non-rotating drive rod
- Continuous duty operation
- Large range of accessories

Linear Drive with Ball Screw Drive and Piston Rod Series OSP-E..SBR

SERIES OSP-E, LINEAR DRIVE WITH BALL SCREW DRIVE, INTERNAL PLAIN BEARING GUIDE AND PISTON ROD

STANDARD VERSIONS OSP-E..SBR

Pages 73-75

Standard carrier with internal guidance and integrated magnet set for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

BALL SCREW PITCH

The ball screws spindles are available in various pitches: OSP-E25SBR: 5 mm OSP-E32SBR: 5, 10 mm OSP-E50SBR: 5, 10, 25 mm

ACCESSORIES

MOTOR MOUNTINGS

Page 123

END CAP MOUNTING

Page 131 For end-mounting the actuator on the extending rod side

MID SECTION SUPPORT

Page 135 For mounting the actuator on the dovetail grooves and on the motor end

FLANGE MOUNTING C

Page 132 For end-mounting the actuator on the extending rod side.

TRUNNION MOUNTING EN

Page 139

Trunning mounting EN in combination with pivot mounting EL.

 steplessly adjustable in axial direction.

PISTON ROD EYE Page 148

PISTON ROD CLEVIS

Page 148

PISTON ROD COMPENSATING COUPLING Page 149 For compensating of radial and angular misaligments

MAGNETIC SWITCHES SERIES RS AND ES

Page 153 For contactless position sensing of end stop and intermediate carrier positions.

A1P702E00GAG50X

() ORIGA

Features

Cha	racteristics			
Cha	racteristics	Symbol	Unit	Description
Gen	eral Features			
Seri	es			OSP-ESBR
Name				Linear drive with ball screw drive and piston rod
Mounting				see drawings
Temperature range		$ec{\vartheta}_{\min} \ ec{\vartheta}_{\max}$	°C °C	-20 +80
Weight (Mass)			kg	seetable
Installation				In any position
	Slotted profile			Al anodized
	Ball screw			Steel
_	Ball nut			Steel
eria	Piston rod			Stainless steel
Mat	Guide bearings			Low friction plastic
	Sealing band			Hardened, corrosion resistant steel
	Screws, nuts			Zinc plated steel
	Mountings			Zinc plated steel and aluminium
Enca	apsulation class		IP	54

Linear Drive with **Ball Screw Drive and Piston Rod**

Series OSP-E..SBR Size 25, 32, 50

Weight (Mass) and Inertia

	-							
Series	Weight (Mas At stroke 0 m	ss) [kg] Add per metre stroke	Moving Ma At stroke 0 m	ass [kg] ^{Add} per metre stroke	Inertia [x 10-6 kgm2] At stroke 0 m			
OSP-E25SBR	0.7	3.0	0.2	0.9	1.2	11.3		
OSP-E32SBR	1.7	5.6	0.6	1.8	5.9	32.0		
OSP-E50SBR	4.5	10.8	1.1	2.6	50.0	225.0		

Standard Version:

- Standard carrier with internal plain bearing guide
- Pitches of Ball Screw Spindle: Type OSP-E25SBR:5mm Type OSP-E32SBR: 5, 10 mm Type OSP-E50SBR: 5, 10, 25 mm

Option:

Key way version

Installation Instructions

Use the threaded holes in the free end cap and a mid-section support close to the motor end for mounting the

linear actuator.

Maintenance

The right to introduce technical modifications is reserved All moving parts are long-term lubricated for a normal operational environment. PARKER-ORIGA recommends a check and lubrication of the linear drive, and if necessary a change of wear parts, after an operation time of 12 months or 3000 km travel of distance. Please refer to the operating instructions supplied with the drive.

ORIGA

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended for selection :

- 1. Check that the maximum values in the adjacent chart and transverse force/stroke graph below are not exceeded.
- 2. Check the lifetime/travel distance in graph below.
- 3. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time in application.

Transverse Force / Stroke

The permissible transverse force is reduced with increasing stroke length. according to the adjacent graphs.

Maximum rpm / Stroke

At longer stokes the speed has to be reduced according to the adjacent graphs.

Performance overview

Characteristics	Unit	Description						
Series		OSP-E25SBR	OSP-E3	2SBR	OSP-E50SBR			
Pitch	[mm]	5	5	10	5	10	25	
Max. speed	[m/s]	0.25	0.25	0.5	0.25	0.5	1.25	
Linear motion per revolution drive shaft	[mm]	5	5	10	5	10	25	
Max. rpm drive shaft	[min ⁻¹]	3000	3000		3000			
Max. effective action force F _A Corresponding torque drive shaft	[N] [Nm]	260 0.45	900 1.1	1.8	1200 1.3	2.8	6.0	
No-load torque	[Nm]	0.2	0.2	0.3	0.3	0.4	0.5	
Max. allowable torque on drive shaft	[Nm]	0.6	1.5	2.8	4.2	7.5	20	
Max. allowable acceleration	[m/s ²]	5	5		5			
Typical repeatability	[mm/m]	±0.05	±0.05		±0.05			
Max.Standard stroke length	[mm]	500	500		500			

Transverse Force / Stroke

Maximum rpm / Stroke

Performance as a function of the action force

Performance / Action force

The performance to be expected depends on the maximum required actions force of the application. An increase of the action force will lead to a reduced performance.

* Note:

The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 25 mm.

Option 3: Keyway

Option 4: Keyway long version

Order stroke = required travel + 2 x safety distance.

KL

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information, please contact your local PARKER-ORIGA representative.

Dimension Table [mm]

Series	В	С	Ε	GxH	K	I ₈	АМ	ØCF	CG	FB	FH	ØKB	KD	КК	KL	ØKN	ØKS	КТ
OSP-E25SBR	22	41	27	M5 x 10	21.5	110	20	22	26	40	39.5	6 _{h7}	2	M10x1.25	17	13	-	-
OSP-E32SBR	25.5	52	36	M6 x 12	28.5	175.5	20	28	26	52	51.7	10 _{h7}	2	M10x1.25	31	20	33	2
OSP-E50SBR	33	87	70	M6 x 12	43	206	32	38	37	76	77	15 _{h7}	3	M16x1.5	43	28	44	3

Linear Drive with Trapezoidal Screw Drive and Piston Rod Series OSP-E..STR

Description	Page
Overview	77-80
Technical Data	81-82
Dimensions	83

() ORIGA

ELECTRIC LINEAR DRIVE FOR INTERMITTENT APPLICATIONS

A completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

Linear Drive with Trapezoidal Screw Drive, Internal Plain Bearing Guide and Piston Rod

Advantages

- Accurate path and position control
- High force output
- Self-locking
- Excellent slow speed characteristics
- Easy installation
- Low maintenance
- Ideal for level regulation, lifting and other applications with intermittent operations

End cap screws with threaded mounting holes

To simplify design work OSP-E system CAD files are available, which are compatible with most common CAD systems

() ORIGA

SERIES OSP-E, LINEAR DRIVE WITH TRAPEZOIDAL SCREW DRIVE, INTERNAL PLAIN BEARING GUIDE AND PISTON ROD

STANDARD VERSIONS OSP-E..STR

Pages 80-83

Standard carrier with internal guidance and integrated magnet for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

ACCESSORIES

MOTOR-MOUNTINGS

Page 123

END CAP MOUNTING

Page 130 For end-mounting the actuator on the extending rod side.

MID SECTION SUPPORT

Page 134 For mounting the actuator on the dovetail grooves and on the motor end.

FLANGE MOUNTING C

Page 132 For end-mounting the actuator on the extending rod side

TRUNNION MOUNTING EN

Page 139 Trunning mounting EN in combination with pivot mounting EL. – steplessly adjustable in axial direction.

PISTON ROD EYE Page 148

PISTON ROD CLEVIS Page 148

PISTON ROD COMPENSATING COUPLING Page 149 For compensating of radial and angular misaligment.

MAGNETIC SWITCHES SERIES RS AND ES

Page 153 For contactless position sensing of end stop and intermediate carrier positions.

A3P154E0GGAG0X

Characteristics

Cha	racteristics	Symbol	Unit	Description
Gen	eral Features			
Seri	es			OSP-ESTR
Nam	ne			Linear Drive with Trapezoidal Screw Drive and Piston Rod
Mounting				Seedrawings
Temperature Range		$ec{\vartheta}_{min} \ ec{\vartheta}_{max}$	°C °C	-20 +70
Weight (mass)			kg	Seetable
Installation				In any position
	Slotted profile			Extruded anodized aluminium
	Trapezoidal screw			Cold rolled steel
<u>ia</u>	Drive nut			Thermoplastic polyester
ater	Piston rod			Stainless steel
Σ	Sealing band			Hardened, corrosion resistant steel
	Guide bearings			Low friction plastic
	Screws, nuts			zinc plated steel
	Mountings			zinc plated steel and aluminium
Enc	apsulation class		IP	54

Weight (mass) and Inertia

U (,							
Series	Weight (ma At stroke 0 m	ss)[kg] Add per metre stroke	Moving m At stroke 0 m	ass [kg] Add per metre stroke	Inertia [x 10-6 kgm2] At stroke 0 m Add per metre			
OSP-E25STR	0.4	2.9	0.1	0.7	1.1	10.3		
OSP-E32STR	0.9	5.4	0.2	1.2	3.9	29.6		
OSP-E50STR	2.4	10.6	0.8	1.6	24.6	150		

Installation Instructions

Use the threaded holes in the free end cap and a mid-section support close to the motor end for mounting the

linear actuator. The linear actuator can be fitted in any position. To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards.

Maintenance

All moving parts are long-term lubricated for a normal operational environment. PARKER-ORIGA recommends a check and lubrication of the linear drive, and if necessary a change of wear parts, after an operation time of 12 months or 300 km travel of distance. Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

Contactless position sensing

Please use the magnetic switch mentioned below:

- KL3096 (Type RS-K, normaly closed, Reed-contact, with cable)
- KL3098 (Type ES-S, Magnetic electronic, PNP-switch with DIN-plug)

For more information see page 153.

Linear Drive with Trapezoidal Screw Drive and Piston Rod

Series OSP-E..STR Size 25, 32, 50

Standard Version:

- Dovetail profile for mounting of accessories and the actuator itself
- Pitch of Trapezoidal Spindle: Type OSP-E25STR : 3 mm Type OSP-E32STR: 4 mm Type OSP-E50STR: 5 mm

A1P640E00GAG0X

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended for selection :

- 1. Check that the maximum values in the adjacent chart and transverse force/stroke graph below are not exceeded.
- 2. Check the lifetime/travel distance in graph below.
- 3. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time in application

Transverse Force / stroke

Performance / Action Force

The Linear Drives are designed for a 10% intermittent usage. The performance to be expected depends on the maximum required actions force of the application. An increase of the action force will lead to a reduced performance.

ORIGA

Performance Overview

Characteristics	Unit	Description		
Size		OSP-E25STR	OSP-E32STR	OSP-E50STR
Pitch	[mm]	3	4	5
Max. speed	[m/s]	0.075	0.1	0.125
Linear motion per revolution, drive shaft	[mm]	3	4	5
Max. rpm, drive shaft	[min ⁻¹]	1500 ²⁾	1500	1500
Max. effective action force F _A Corresponding torque on drive shaft	[N] [Nm]	800 1.35	1600 3.4	3300 9.25
No-load torque	[Nm]	0.3	0.4	0.5
Max. allowable torque on drive shaft	[Nm]	1.7	4.4	12
Self-locking force $F_{L}^{(1)}$	[N]	800	1600	3300
Typical repeatability	[mm/m]	±0,5	±0,5	±0,5
Max.Standard stroke length	[mm]	500	500	500

¹⁾ Related to screw types Tr 12x3, Tr 16x4, Tr 24x5 see data sheet 1.35.011-1 – for inertia

²⁾ from 0,4 m stroke max. 1200 min-1 permissible

Transverse Force / Stroke

Performance as a function of the action force

82

* NOTE:

The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 25 mm.

Order stroke = required travel + $2 \times \text{safety distance}$.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information, please contact your local PARKER-ORIGA representative.

Dimension Table [mm]																
Series	В	С	Е	GхН	К	l _s	АМ	CF	CG	FB	FH	KB	KD	КК	KL	KN
OSP-E25STR	22	41	27	M5 x10	21.5	83	20	22	26	40	39.5	6 _{h7}	2	M10x1.25	17	13
OSP-E32STR	25.5	52	36	M6 x12	28.5	94	20	28	26	52	51.7	10 _{h7}	2	M10x1.25	31	20
OSP-E50STR	33	87	70	M6 x12	43	120	32	38	37	76	77	15 _{h7}	3	M16x1,543	28	

ORIGA

Multi-Axis System for Electrical Linear Drives Series OSP-E

Contents

Description	Page
Overview	85-88
Adapter plates	89-97
Profile Mountings	129
Intermediate Drive Shafts	101

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com

MULTI-AXIS CONNECTION SYSTEM – SIMPLIFIES ENGINEERING AND INSTALLATION

A completely new system for easy connection of OSP-E linear drives

in multi-axis systems.

MULTI-AXIS CONNECTIONS

With this highly adaptable system for connection of linear drives in multi-axis arrangements, PARKER-ORIGA offers design engineers complete flexibility. A wide range of adapter plates, profile mountings and intermediate drive shafts simplify engineering and installation. The connection system enables actuators to be mounted in carrier to carrier, carrier to profile, carrier to end cap mounting, carrier to end cap. Developed for the heavy-duty toothed belt drive series OSP-E..BHD, the system provides cross-connection with the same series and also other linear drive series in the ORIGA SYSTEM PLUS range.

MULTI-AXIS CONNECTION SYSTEM

AVAILABLE MOUNTING COMBINATIONS

Available Mounting Combinations

Corioc																										
Jelies		25BHD			32BH	D			50BH	D			25BV	25BV 25B/SB/ST			32B/S	B/ST			50B/S	B/ST				
	Туре	C ¹	P ²	E ³	EM ⁴	C⁵	P ⁶	E ⁷	EM 8	C٩	P 10	E 11	EM 12	E ¹¹	C ¹³	P 14	E ¹⁵	EM 16	C 17	P 18	E 19	EM 20	C 21	P 22	E ²³	EM 24
OSP- E25BHD	MA1-25	Х	Х		Х	Х	Х		X						Х	Х		Х	Х	Х		Х	X	x		Х
OSP- E32BHD	MA1-32	Х	Х		Х	Х	Х		Х	Х	Х		Х						Х	Х		Х	X	Х		Х
OSP- E50BHD	MA1-50	Х	Х		Х	Х	Х		Х	Х	Х		Х						Х				X	Х		Х
OSP- E25BHD	MA2-25			X				Х																	Х	
	MA2-32													Х												
OSP- E32BHD	MA2-32			X				Х				Х		Х											Х	
OSP- E50BHD	MA2-50			X				Х				Х		Х											Х	
OSP- E25BHD	MA3-25		Х		Х		Х		X							Х		Х		Х		Х		Х		Х
OSP- E32BHD	MA3-32		Х		Х		Х		X		Х		Х							Х		Х		Х		Х
OSP- E50BHD	MA3-50		Х		Х		Х		Х		Х		Х											Х		Х

Abbreviations:

C = MAn to Carrier,

P = MAn to Profile mounting,

E = MAn to End cap,

EM = MAn to End cap mounting (n=1,2,3)

ORIGA

* For type OSP-E..SBR / ..STR only combination P is available.

Values in superscript refer to corresponding adapter plate dimensions on pages 89-97.

e.g. Dimensions corresponding to combination option "C" for adapter plate MA1-50 connected to an OSP-E32BHD carrier are shown with Superscript number 5 on the MA1-50 adapter plate on page 91

88

Other combinations on request.

Order Instructions and Weight									
Description	Weight(mass)[kg]	Order-No.							
Adapter Plate Type MA1-25	0.7	12269							

The right to introduce technical modifications is reserved

A1P559E00FAG0X

OSP-E Series Electric Linear Drives and Guides Adapter Plate

Adapter Plate for OSP-E32

Type: MA1-32

Dimensions [mm] Adapter PlateType MA1-32

Order Instructions and Weight Description Weight (mass) [kg] Order No. Adapter Plate Type MA1-32 1.0 12272

Order Instructions and Weight		
Description	Weight (mass) [kg]	Order No.
Adapter Plate Type MA1-50	1.1	12275

for OSP-E25

PLUS

Type: MA2-25

ORIGA SYSTEM

OSP-E Series Electric Linear Drives and Guides Adapter Plate

Order Instructions and Weight									
Description	Weight (mass) [kg]	Order No.							
Adapter Plate Type MA2-25	0.6	12270							

() ORIGA

Catalog 0950 Dimensions

Order Instructions and Weight		
Description	Weight (mass) [kg]	Order No.
Adapter Plate Type MA2-32	1.1	12273

ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com SYSTEM

Type: MA2-50

PLUS

OSP-E Series Electric Linear Drives and Guides Adapter Plate

Adapter Plate Dimensions [mm] Adapter PlateType MA2-50 for OSP-E50 175 158 100 79 70 36 27 (⊕) (⊕ (\oplus) ۲ \oplus 70^{11,23)} $\frac{100^{7}}{158^{11}}$ 79³⁾ 27³⁾ 36^{7} 240 \oplus \bigcirc € (⊕)--(Ê)-Ø6.60 (24x) ∟Ø11∓7 Ø5.50 (8x) ∟Ø10∓6 90 2 e.g. Dimensions with superscript number 5 correspond to the option "E" for OSP-E32BHD actuator.

Order Instructions and Weight

Description	Weight (mass) [kg]	Order No.
Adapter Plate Type MA2-50	1.4	12276

255

Order Instructions and Weight

Description	Weight(mass)[kg]	Order No.
Adapter Plate Type MA3-25	1.3	12271

ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com

OSP-E Series Electric Linear Drives and Guides Adapter Plate

Adapter Plate for OSP-E32

Type: MA3-32

Order Instructions and Weight

Description	Weight (mass) [kg]	Order No.
Adapter Plate Type MA3-32	1.8	12274

Description	Weight (mass) [kg]	Order No.
Adapter Plate Type MA3-50	2.3	12277

Catalog 0950 Dimensions & Technical Data

Critical Speed v. for Coupling Length

Multi-Axis-System Accessories Complete Intermediate Drive Shaft

Size 25, 32, 50 OSP ORIGA SYSTEM PLUS

for Linear drive

Series OSP-E..BHD

Note:

For Series OSP-E..BHD with integrated gearbox, please contact your local PARKER-ORIGA technical support.

For other series on request.

Features:

- Backlash-free shaft connection under pre-stress
- Design up to speed 1500 rpm
- Intermediate Drive Shaft with double coupling for larger displacements of parallel linear drives
- Easy to mount

Material:

Aluminium (AL-H) / Steel (St-H) Polyurethane/Hytrel

Characteristics/DimensionTable[mm] and Order No.

Series	Туре	Max.Torque-	CE	D _H	KB***	L _{zr}	L _{R1}	d _R	Order No.*	
		[Nm] **							For Clamp Shaft	For Hollow
Shaft										
OSP-E20BHD	MAS-20	28	38	40	12 _{k6}	<2100	L _{zR} -98	20x3.0	16256	16257
OSP-E25BHD	MAS-25	39	42	55	16 _{k6}	< 3000	L _{zR} -112	25x2.5	12305	12281
OSP-E32BHD	MAS-32	42	56	55	22 _{k6}	< 3000	L _{zR} - 126	25x2.5	12306	12282
OSP-E50BHD	MAS-50	102	87	65	32 _{k6}	< 3000	L _{zR} -167	35 x 4.0	12307	12283

 Complete with L_{R1} Length in mm. Example: 12305-1200 (Length L_{R1} = 1200 mm)

 For higher torque requirement, please contact your local PARKER-ORIGA technical support *** Other dimensions for KB on request.

ORIGA

Linear Guides Series OSP-E

Contents

	Description	Page
	Overview	101-102
	Plain Bearing SLIDELINE	103-104
	Roller Guide POWERSLIDE	105-108
	Aluminium Roller Guide PROLINE	109-111
NEW	Heavy-duty guide HD	113-115

() ORIGA

Catalog 0950 **Features**

OSP-E Series Electric Linear Drives and Guides Linear Guides

Adaptive modular system

The Origa system plus - OSP provides a comprehensive range of linear guides for the pneumatic and electric linear drives.

Versions:

Electric Linear Drive Series:

- OSP-E..B
- OSP-E..SB
- OSP-E..ST
- Sizes: 25 - 32 - 50

Advantages:

- Takes high loads and moments
- High precision
- Smooth operation
- · Can be retrofitted
- · Can be installed in any position

Linear Guides

Electric linear drive

- Series OSP-E..B (Toothed Belt Driven)
- Series OSP-E..SB (Ball Screw Driven)
 Series OSP-E..ST (Trapezoidal Screw Driven)

SLIDELINE

The cost-effective plain bearing guide for medium loads. - for spindle drives only Series OSP-E..SB, OSP-E..ST

See page 103

POWERSLIDE The roller guide for heavy loads.

See page 105

PROLINE The ball bushing guide for

heavy loads and speed.

See page 109

HD-Guide (heavy-duty guide)

The recirculating ball bearing guide for the heaviest loads and greatest accuracy.

- for Screw Drives only Series OSP-E..SB, ÓSP-E..ST

See page 113

Catalog 0950

Features

Versions

Technical Data

The table shows the maximum permissible values for smooth operation, which must not be exceeded even under dynamic conditions.

The load and moment figures apply to speeds v < 0.2 m/s.

A1P641D00FAG 0X

The right to introduce technical modifications is reserved

Series	Max.N	/oments [Nm]	;	Max. Load [N]	Mass of E with guide with 0 mm stroke	Prive e[kg] inreaseper 100 mm stroke	Mass of guide carriage [kg]	Ident-Nr. SLIDELINE ¹⁾ without brake for OSP-E Screw		
	Mx	Му	Mz	F	OSP-EScrew	OSP-E Screw				
SL 25	14	34	34	675	1.8	0.42	0.61	20342		
SL 32	29	60	60	925	3.6	0.73	0.95	20196		
SL50	77	180	180	2000	8.7	1.44	2.06	20195		

¹⁾ Corrosion resistant fixtures available on request

Series SL 25 to 50 for Linear Drive • Series OSP-E Screw

Features:

- Anodised aluminium guide rail with prism-shaped slideway arrangement
- Adjustable plastic slide elements
- Composite sealing system with plastic and felt wiper elements to remove dirt and lubricate the slideways.
- Corrosion-resistant version available
 on request

Dimensions

Dimension Table [mm]

Series	Α	В	J	М	Z	AA	BB	DD	CF	EC	ED	EE	EG	EW	FF	FT	FS	GG	JJ	ZZ
SL 25	100	22	117	40.5	M6	162	142	60	72.5	47	12	53	39	30	64	73.5	20	50	120	12
SL 32	125	25.5	152	49	M6	205	185	80	91	67	14	62	48	33	84	88	21	64	160	12
SL 50	175	33	200	62	M6	284	264	120	117	94	14	75	56	39	110	118.5	26	90	240	16

Mid-Section Support

(for versions see page 146)

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading.

Load case 1 Top carrier Load case 2 Side carrier

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com
Catalog 0950

Features

Versions

Technical Data

The Table shows the maximum permissible values for smooth operation, which must not be exceeded even under dynamic conditions.

Roller Guide-POWERSLIDE

Series PS 25 to 50 for Linear Drive • Series OSP-E Belt * • Series OSP-E Screw

Features:

- anodised aluminium guide carriage with vee rollers having 2 rows of ball bearings
- hardened steel guide rail
- several guide sizes can be used on

the same drive

- max. speed v = 3 m/s
- tough roller cover with wiper and grease nipple
- any length of stroke up to 3500 mm (longer strokes on request). The maximum stroke lengths of drives OSP-E..B, OSP-E..SB and OSP-E..ST must be observed.

OSP-E Belt:

For position of guides see page 106

* Series PS for OSP-E Bi-parting version on request

	Series	Max Mon [Nm]	nents	[N]	Max. Load with	Mass of dri with guide	ve [kg] increaseper	100 mm stro	carriage ke	of guide for [ka]	Mass* Powerslide	Order No.
		Мx	My	Mz	Fy, Fz	OSP-E Belt	OSP-E Screw	OSP-E Belt	OSP-E Screw	[.,9]	OSP-E* Belt	OSP-E Screw
	PS 25/25	14	63	63	910	1.9	1.8	0.30	0.37	0.7	20304	20015
	PS 25/35	17	70	70	1010	2.1	1.9	0.34	0.41	0.8	20305	20016
	PS 25/44	20	175	175	1190	3.0	2.7	0.42	0.49	1.5	20306	20017
	PS 32/35	20	70	70	1400	3.1	3.2	0.51	0.63	0.8	20307	20286
	PS 32/44	50	175	175	2300	4.0	4.1	0.59	0.70	1.5	20308	20287
Ī	PS 50/60	90	250	250	3000	8.8	8.7	1.04	1.36	2.3	20309	20288
Ī	PS 50/76	140	350	350	4000	12.2	12.0	1.28	1.6	4.9	20310	20289

Dimensions – Series OSP-E Belt

The dimension "AZ" must be added to "A". Stroke length to order is stroke + dimension "AZ" + safety clearance. Please also note the effect of dimension "AZ" when retrofitting a guide – contact your local PARKER-ORIGA technical support department.

Dimensions – Series OSP-E Screw

Dimension Table [mm]

Series	Α		в		Z	AA	AZ	BB	СС	CF	EE	EF	EG	FF	FS	FT	GG	JJ	KG
	OSP-E Belt	OSP-E Screw	OSP-E Belt	OSP-E Screw						•			- 5						
PS 25/25	125	100	22	22	6xM6	145	5	90	47	79.5	53	11	39	80	20	73,5	64	125	57
PS 25/35	125	100	22	22	6xM6	156	10	100	57	89.5	52.5	12.5	37.5	95	21.5	73	80	140	57
PS 25/44	125	100	22	22	6xM8	190	27	118	73	100	58	15	39	116	26	78.5	96	164	57
PS 32/35	150	125	25	25.5	6xM6	156	-	100	57	95.5	58.5	12.5	43.5	95	21.5	84.5	80	140	61
PS 32/44	150	125	25	25.5	6xM8	190	6	118	73	107	64	15	45	116	26	90	96	164	61
PS 50/60	200	175	25	33	6xM8	240	5	167	89	130.5	81	17	61	135	28.5	123.5	115	216	85
PS 50/76	200	175	25	33	6xM10	280	25	178	119	155.5	93	20	64	185	39	135.5	160	250	85

Service Life

Calculation of service life is achieved in two stages:

- Determination of load factor
- L_{F} from the loads to be carried
- Calculation of service life in km

Lubrication

For maximum system life, lubrication of the rollers must be maintained at all times.

Only high quality lithium-based greases should be used.

Lubrication intervals are dependent on environmental conditions (temperature, running speed, grease quality etc.) therefore the installation should be regularly inspected.

2. Calculation of service life	
For PS 25/25, PS 25/35 and PS 32/35:	Service life [km] = $\frac{106}{(L_F + 0.02)^3}$
For PS 25/44, PS 32/44 and PS 50/60:	Service life [km] = $\frac{314}{(L_F + 0,015)^3}$
For PS 50/76:	Service life [km] = <u>(L_F + 0,015)³</u>

Catalog 0950

Technical Data

The table shows the maximum permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

The table shows the maximum permissible values for light, shockfree operation, which must not be exceeded even under dynamic conditions.

With a load factor of < 1, the service life is 5000 km. The sum of the loads must not

exceed >1

A1P(

The right to introduce technical modifications is reserved

Series	Max. Max. Moments[Nm] Load[N]			Max. Load [N]	Mass of with gui	f Drive de [kg]	1.		Mass guide-	Order N PROLI	NO. NE ¹⁾
	Mx	Mv	Mz	Fv. Fz	0 mm st OSP-E Belt	roke OSP-E Screw	Increas 100 mm OSP-E Belt	e per stroke OSP-E Screw	carriage [kg]	tor OSP-E Belt*	OSP-E Screw
PL 25	19	44	44	986	1.9	1.8	0.33	0.40	0.75	20874	20856
PL 32	33	84	84	1348	3.6	3.7	0.58	0.70	1.18	20875	20857
PL50	128	287	287	3582	8.9	8.8	1.00	1.32	2.50	20876	20859

¹⁾ Stainless steel version on request

A1P644E00FAG0X

Aluminium Roller Guide PROLINE

Series PL 25 to 50 for Linear Drive • Series OSP-E Belt * • Series OSP-E Screw

Features:

- High precision
- High velocities (10 m/s)
- Smooth operation low noise
- Integated wiper system
- Compact dimensions compatible to Slideline plain bearing guide
- Stainless steel version available on request
- Any length of stroke up to 3750 mm The maximum stroke lengths of drives OSP-E..B, OSP-E..SB and OSP-E..ST must be observed
- * Series PL for OSP-E Bi-parting version on request

Dimensions Series OSP-E Belt PL25, PL32, PL50

* Please observe:

 $\label{eq:product} Dimension ``AZ" must be added to dimension ``A". The stroke to be ordered will be: stroke + min. dimension ``AZ" + additional length. Please observe the effect of dimension ``AZ" when retrofitting a guide. Please contact our application engineers.$

Dim	Dimension Table [mm] Series OSP-E Belt PL25, PL32, PL50																			
Series	Α	В	J	М	Z	AA	AZ	BB	DD	CF	EC	EE	EG	FF	FS	FT	GG	JJ	KG	ZZ
PL25	125	22	117	40,5	M6	154	10	144	60	72.5	32.5	53	39	64	23	73.5	50	120	57	12
PL32	PL32 150 25 152 49 M6 197 11 187 80 91 42 62 48 84 25 88 64 160 61 12																			
PL50	PL50 200 25 200 62 M6 276 24 266 120 117 63 75 57 110 29 118.5 90 240 85 16																			

DimensionTable[mm]OSP-E Screw PL25, PL32, PL50																		
Series	Series A B J M Z AA BB DD CF EC EE EG FF FS FT GG JJ ZZ																	
PL25	PL25 100 22 117 40.5 M6 154 144 60 72.5 32.5 53 39 64 23 73.5 50 120 12																	
PL32	125	25.5	152	49	M6	197	187	80	91	42	62	48	84	25	88	64	160	12
PL50 175 33 200 62 M6 276 266 120 117 63 75 57 110 29 118.5 90 240 16																		

Mid-Section Support

(for versions see page 146)

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading.

Ö ORIGA

Version for Electric Linear-Drive: Series OSP-E Screw

Loads, forces and moments

OSP-E..SB, ..ST

A1P740D00FAG00X

Technical Data

For the maximum permissible loads please refer to the table below. If several forces and moments loads act upon the guide simultaneously, the following equation will apply:

$$\frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} + \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} \leq 1$$

The total of the loads must not exceed 1 under any circumstances.

The table shows the maximum permissible values for light, shockfree operation which must not be exceeded even under dynamic conditions.

Heavy-duty-Guide HD

Series HD 25 to 50 for Linear Drive • Series OSP-E..SB, ..ST

Features:

- Guide system
 4-row recirculating ball bearing guide
 polished and hardened guide rails of
- poilsned and nardened guide rails of steel
- for highest loads in all directions
- highest precision
- integrated wiper
- grease nipple for relubrication
- anodized guide carriage with the same connecting dimensions as OSP-guide GUIDELINE
- maximum velocity v = 5 m/s

Series	Max. N [Nm]	Ioments	I	Max.Load [N]	d	Mass of drive with guide [k at 0 mm strol	e g] ke	adper100 m	m stroke	Mass guide- carrier	Order No HD-guide for OSP-E
	Mx My Mz			Fy	Fz	OSP-ESB	OSP-EST	OSP-ESB	OSP-EST	[[[]]	USF-L
HD 25	260	320	320	6000	6000	3.215	3.315	3.315 0.957 1.00		1.289	21246
HD 32	285 475 475		6000	6000	4.868	4.968	1.198	1.258	1.367	21247	
HD 50	1100 1400 1400			18000	18000	13.218	13.318	2.554	2.674	3.551	21249

The right to introduce technical modifications is reserved

Hint:

The heavy-duty guide HD must be fitted to a level surface over the entire length.

If T-nuts are used, the distance between them must not exceed 100 mm.

Arrangement of magnetic switches:

The magnetic switches can be fitted to either side over the entire length.

More Information: Magnet switch see page 153 Cable cover see page 160

() ORIGA

Catalog 0950 Dimensions

OSP-	E Ser	ies Elec	tric Linear	Drives	and	Guides
Heavy	y Duty	y Guide	- HD			

Dimension Table [mm]

Series	Α	В	AF	FB	FC	FD	FE	FF	FG	FH	FI	FJ	ØFL
HD25	100	22	22	120	145	110	70	M6	11	78	100	73	6
HD32	125	25.5	30	120	170	140	80	M6	11	86	112	85	6
HD50	175	33	48	180	200	160	120	M8	14	118	150	118	7.5
Series	FM	FN	FP	FQ	FR	FS	FT	FU	TA	ТВ	TE	TF	TH
HD25	17.5	8	100	45	31	25	59	28	5.2	11.5	1.8	6.4	50
HD32	17.5	8	100	45	31	25	63	30	5.2	11.5	1.8	6.4	60
HD50	22	10	100	58	44	35.5	89	30	8.2	20	4.5	12.3	76

	F	0	
	OSP-E.	.SB,ST	
x	HD25	HD32	HD50
00	50.0	75.0	75.0
01	50.5	75.5	75.5
02	51.0	76.0	76.0
03	51.5	76.5	76.5
04	52.0	77.0	77.0
05	52.5	77.5	77.5
06	53.0	78.0	78.0
07	53.5	78.5	78.5
08	54.0	79.0	79.0
09	54.5	79.5	79.5
10	55.0	80.0	80.0
11	55.5	80.5	80.5
12	56.0	81.0	81.0
13	56.5	81.5	81.5
14	57.0	82.0	82.0
15	57.5	82.5	82.5
16	58.0	83.0	83.0
10	58.5	83.5	83.5
18	50.5 59.0	84.0	84.0
10	59.0	84.5	84.5
20	60.0	85.0	85.0
20	60.5	95.5	95.5
21	61.0	26.0	86.0
22	61.5	30.0	86.5
23	62.0	305	87.0
24	62.0	37.0	07.0
20	62.0	37.3	07.5
20	62.5	30.0 20 E	00.0
27	64.0	20.0	80.0
20	64.0	39.0	89.0
29	65.0	39.5	09.5
30	05.0 CE E	40.0	90.0
20	66.0	40.5	90.5
32	00.U	41.0	91.0
33	00.5	41.5	91.5
34	67.0	42.0	92.0
35	67.5	42.5	92.5
30	68.0	43.0	93.0
37	68.5	43.5	43.5
38	69.0	44.0	44.0
39	69.5	44.5	44.5
40	70.0	45.0	45.0
41	70.5	45.5	45.5
42	/1.0	46.0	46.0
43	/1.5	46.5	46.5
44	72.0	47.0	47.0
45	/2.5	47.5	47.5
46	73.0	48.0	48.0
47	73.5	48.5	48.5
48	74.0	49.0	49.0
49	74.5	49.5	49.5

F0 OSP-F_SB_ST												
OSP-ESB,ST x HD25 HD32 HD50												
x	HD25	HD32	HD50									
50	75.0	50.0	50.0									
51	75.5	50.5	50.5									
52	76.0	51.0	51.0									
53	76.5	51.5	51.5									
54	77.0	52.0	52.0									
55	77.5	52.5	52.5									
56	78.0	53.0	53.0									
57	78.5	53.5	53.5									
58	79.0	54.0	54.0									
59	79.5	54.5	54.5									
60	80.0	55.0	55.0									
61	80.5	55.5	55.5									
62	81.0	56.0	56.0									
63	81.5	56.5	56.5									
64	82.0	57.0	57.0									
65	32.5	57.5	57.5									
66	33.0	58.0	58.0									
67	33.5	58.5	58.5									
68	34.0	50.5	50.5									
60	24.0	50.5	59.0									
70	34.5	59.5 60.0	59.5 60.0									
70	35.0	60.0 60.5	60.0 60.5									
71	30.0	61.0	61.0									
72	36.0	61.0	61.0									
73	30.5	01.5	01.5									
74	37.0	62.0	62.0									
75	37.5	02.5	02.5									
76	38.0	63.0	63.0									
77	38.5	03.5	03.5									
78	39.0	64.0	64.0									
79	39.5	64.5	64.5									
80	40.0	65.0	65.0									
81	40.5	65.5	65.5									
82	41.0	66.0	66.0									
83	41.5	66.5	66.5									
84	42.0	67.0	67.0									
85	42.5	67.5	67.5									
86	43.0	68.0	68.0									
87	43.5	68.5	68.5									
88	44.0	69.0	69.0									
89	44.5	69.5	69.5									
90	45.0	70.0	70.0									
91	45.5	70.5	70.5									
92	46.0	71.0	71.0									
93	46.5	71.5	71.5									
94	47.0	72.0	72.0									
95	47.5	72.5	72.5									
96	48.0	73.0	73.0									
97	48.5	73.5	73.5									
98	49.0	74.0	74.0									
99	49.5	74.5	74.5									
L		I										

NOTE:

The dimension FO is derived from the last two digits of the stroke:

Sample :

stroke 15**25 mm**

For a cylinder OSP-E25 the table shows that for x = 25 mm: FO = 62.5 mm

A1P746DGAG00X

The right to introduce technical modifications is reserved

117

Accessories for Electric Linear Drives Series OSP-E

Description	Illustration	Page
Motor Mounting		120-125
(Coupling housing, motor flange, motor coupling)		
Belt Gear		126
End Cap Mountings, Standard		128-131
End Cap Mountings for OSP-E with guides	•	144, 145
Flange Mountings C		132
Profile Mounting for Multi-Axis systems		133
Mid-Section Support, Standard	the second second	134, 135
Mid-Section Support for OSP-E with guides		146
Profile connections (Adaptor Profile,		136-138
T-nut Profile, Connection Profile)	00	
Trunnion Mounting EN		139
Pivot Mounting EL		
Clevis Mounting	A a a a	140, 141
Inversion Mounting		142
Piston Rod Eye	~~ @	148
Piston Rod Clevis		148
Piston Rod Compensating Coupling	10 m	149
Magnetic Switches		153 - 156
SFI-plus		157-159
Displacement Measuring System	60	
Cable Cover		160

Accessories for Electric Linear Drives Series OSP-E

Motor Mountings

Contents

Description	Page
Coupling housing (OSP-EBHD)	120
Motor flanges (OSP-EBHD)	120
Coupling housing (OSP-EBV)	121
Motor flanges (OSP-EBV)	121
Coupling housing (OSP-EB)	122
Motor flanges (OSP-EB)	122
Motor Coupling (OSP-EB)	122
Coupling housing (OSP-ESB,ST,SBR,STR)	123
Motor flanges (OSP-ESB,ST,SBR,STR)	123
Motor Coupling (OSP-ESB,ST,SBR,STR)	123
Motor flanges for freely selectable mounting dimensions (OSP-EB,SB,ST,SBR,STR)	124, 125
Belt Gear for freely selectable mounting dimensions (OSP-EB,SB,ST,SBR,STR)	126

() ORIGA

Coupling Housing Motor Flange

Size 20, 25, 32, 50

• Series OSP-E..BHD Linear Drive with toothed belt and integrated guide

Via the coupling housing the gear or the motor can be fitted directly to the drive and the drive shafts by means of a motor flange.

The motor flange matches the above mentioned coupling housing and has to be reworked to match the respective type of motor.

Motor flanges for the available range of gears, servo and stepper motors are included in the respective data sheet, including technical data and dimensions. Please refer to the respective catalogues.

Coupling Housing (for gear or motor mounting)

Dimension Table [mm] and Order Instructions

Series	Description	MA	MQ	Order No.
OSP-E20BHD	Coupling Housing	19	60	16215
OSP-E20BHD	Motor Flange LP050	-	-	16224
OSP-E25BHD	Coupling Housing	22	76	12300
OSP-E25BHD	Motor Flange LP070	-	_	12311
OSP-E32BHD	Coupling Housing	30	98	12301
OSP-E32BHD	Motor Flange LP090	-	-	12312
OSP-E50BHD	Coupling Housing	41	128	12302
OSP-E50BHD	Motor Flange LP120	-	_	12313

Motor Flange (semi-finished)

Dimension Table [mm] and Order Instructions

Series	MB	МС	MD	ME	МН	MU	MV	Order No.
OSP-E20BHD	10	75	25	65.8	6.8	6.6	11	16216
OSP-E25BHD	14	90	36	82	8.5	9	15	12308
OSP-E32BHD	14	100	55	106	10.5	11	18	12309
OSP-E50BHD	18	125	77	144	12.5	13.5	20	12310

Motor Mountings for OSP-E..BV with drive shaft, clamping hub, version 2-5¹⁾

Dimension Table [mm] and Order Instructions

Series	Description	MA	MB	MC	MD	ME	ΜН	MQ	MU	ΜV	Order-No.
OSP-E20BV	Coupling Housing	19	-	-	-	-	-	60	-	-	16215
OSP-E20BV	Motor flange semi-finished	-	10	75	25	65,8	6,8	-	6,6	11	16216
OSP-E20BV	Motor flange LP050	-	-	-	-	-	-	-	-	-	16224
OSP-E25BV	Coupling Housing	22	-	-	-	-	-	76	-	-	12300
OSP-E25BV	Motor flange semi-finished	-	14	90	36	82	8,5	-	9	15	12308
OSP-E25BV	Motor flange LP070	-	-	-	-	-	-	-	-	-	12311

Motor Mountings for OSP-E..BV with drive shaft and tenon, version A-D¹⁾

Universal Motor Flange

Universal Motor Coupling Clamping screw MP Torque MT (Nm)

Dimension Table [mm] and Order Instructions											
Series	Description	Α	В	С	E	E,	E ₂	MA	MR	Order-No.	
OSP-E20BV	Coupling Housing	-	-	60	-	-	-	79	46,5	16269	
OSP-E20BV	Universal-Motor Flange	120	15	-	46,5	46,5	6,6	-	-	16267	
OSP-E25BV	Coupling Housing	-	-	87	-	-	-	84	48	20139	
OSP-E25BV	Universal-Motor Flange	120	15	-	46	46	6,6	_	-	12069	

Dimension Table [mm] and Order Instructions for Universal Motor Coupling

Series	MF	ML	МН	MO	MT [Nm]	Order-No.
OSP-E20BV	12 ^{H7}	66	9,5 ^{H7}	40	10,5	16268
OSP-E25BV	16 ^{H7}	66	9,5 ^{H7}	40	10,5	10845

Coupling Housing Motor Flange Motor Coupling

Series OSP-E..BV Vertical Linear Drive with toothed belt and integrated recirculating ball bearing guide

The coupling housing with suitable motor flange allows proper connection between the drive shaft of the linear drive and the gear shaft or motor shaft. The gear or motor can either be fitted to the linear drive directly or indirectly. If a PARKER-ORIGA gear is used, direct clamping of the gear shaft into to the drive shaft with clamping hub. As an alternative the gear or motor can be fitted to the linear drive via a motor coupling.

¹⁾Hint:

when selecting the type of motor mounting please observe the respective drive shaft versions in accordance with the ordering code of the linear drive (page 171).

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com

Coupling Housing Motor Flange Motor Coupling

Size 25, 32, 50

• Series OSP-E..B Linear Drive with Belt

The coupling housing with suitable motor flange allows easy and inherently stable connection of the gear or the motor to the linear drive.

Hint:

Let us know the mounting dimensions of your motor. Upon request we will be pleased to check and manufacture a motor flange that will come up to your individual needs.

(Also see "motor flange for freely selectable mounting dimensions" page 124)

OSP-E Series Electric Linear Drives and Guides Motor Flange

Coupling Housing (for gear or motor mounting)

Dimension Table [mm] and Order Instructions

Series	Тур	МА	MP	MQ	MR	Order No.
OSP-E25B	250	47	30	40	25	20606
OSP-E32B	320	49	38	49	33	20607
OSP-E50B	500	76	54	65	48	20608

Universal Motor Flange and Motor Coupling

Dimension Table [mm] and Order Instructions für Universal Motor Flange

Series	Α	в	E	E,	E ₂	Order No.
OSP-E25B	100	20	30	15	5.5	12050
OSP-E32B	100	20	38	18	6.6	12053
OSP-E50B	120	15	50	32	9.0	12056

Dimension Table [mm] and Order Instructions für Universal Motor Coupling

Series	MF ^{H7}	ML	MH ^{H7} *	МО	MT [Nm]	Order No.
OSP-E25B	10	30	4	20	0.76	15231
OSP-E32B	10	35	6	30	1.34	15197
OSP-E50B	16	66	9.5	40	10.5	10845

* can be bored out to motor shaft diameter by customer. Other dimensions on request

Coupling Housing (for motor)

Dimension Table [mm] and Order Instructions

Series	Тур	МА	С	MR	Order No.
OSP-E25*	251	38	41	25	20137
OSP-E32*	321	54	52	33	20138
OSP-E50*	501	84	87	48	20139

* ..SB, ..ST, ..SBR, ..STR

Universal Motor Flange and Motor Coupling

Dimension Table [mm] and Order Instructions for Universal Motor Flange

Series	Α	в	E	E,	E ₂	Order No.
OSP-E25*	100	20	27	27	5.5	12060
OSP-E32*	100	20	36	36	6.6	12064
OSP-E50*	120	15	46	46	6.6	12069
+ 00 07 (

* ..SB, ..ST, ..SBR, ..STR

Dimension Table [mm] and Order Instructions for Universal Motor Coupling

Series	MF ^{H7}	ML	MH ^{H7} **	МО	MT [Nm]	Order No.
OSP-E25*	6	30	6	20	0.76	12073
OSP-E32*	10	35	6	30	1.34	15197
OSP-E50*	15	66	9.5	40	10.5	12079

* ...SB, ...ST, ...SBR, ...STR

** can be bored out to motor shaft diameter by customer. Other dimensions on request.

Coupling Housing Motor Flange Motor Coupling

Size 25, 32, 50

• Series OSP-E..SB, ..ST, ..SBR, ..STR Linear Drive with Screw

The coupling housing with suitable motor flange allows easy and inherently stable connection of the gear or the motor to the linear drive.

Hint:

Let us know the mounting dimensions of your motor. Upon request we will be pleased to check and manufacture a motor flange that will come up to your individual needs.

(Also see "motor flange for freely selectable mounting dimensions" page 124)

Motor Flange

for freely selectable mounting dimensions

- Series OSP-E..B Linear Drive with Belt
- OSP-E..SB, ..ST, ..SBR, ..STR Linear Drive with Screw

The motor flange for motors with freely selectable mounting dimensions offers flexible possibilities to connect most different types of motors to the electric linear drives OSP-E. The drive shafts of linear drive and motor are connected with a motor coupling in the coupling housing and the motor flange is centered.

Hint

Please check the following data for the connection of the motor to the freely selectable motor flange and state when ordering:

- 1. mounting angle W of the motor
- 2. bore hole version B as thread M or counterbore S
- 3. pitch circle diameter A as a function of M or S
- 4. Diameter of centring spigot
- 5. Length of motor shaft G

Dimension Table [mm] and Order Instructions

Size	BA1	BA2	ØBB	вс	SA	ØSB	SC	Order No.
25	30	15	5.5	100	27	5.5	100	Contact Factory
32	38	18	6.6	100	36	6.6	100	Contact Factory
50	50	32	9.0	120	46	6.6	120	Contact Factory

() ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com

Dim	Dimension table of the variable dimensions [mm] – Version for Belt drive												
W				90 °									
Size		25	32	50	25	32	50						
А	min. Vers. S	48 + Ød5	60 + Ød5	80 + Ød5	40 + Ød5	49 + Ød5	65 + Ød5						
	max. Vers. S	135 - Ød5	135 - Ød5	160 - Ød5	100 - Ød5	100 - Ød5	120 - Ød5						
	min. Vers. M	45 + B	55 + B	75 + B	40 + B	48 + B	50 + B						
	max. Vers. M	135 - B	135 - B	160 - B	96 - B	96 - B	116 - B						
В	max.		M10			M10							
D	min.	20	30	40	20	30	40						
	max.	98	98	118	85	85	105						
G	min.	18	21	32	18	21	32						
	max.	33	35	45	33	35	45						

Dimension table of the variable	dimonsions	[mm] _ Versio	n for Screw drive
Dimension table of the variable	unnensions	[iiiiii] – versio	i lor Screw unve

W			45 °		90 °				
Size		25	32	50	25	32	50		
Α	min. Vers. S	58 + Ød5	74 + Ød5	123 + Ød5	41 + Ød5	52 + Ød5	87 + Ød5		
	max. Vers. S	135 - Ød5	135 - Ød5	160 - Ød5	100 - Ød5	100 - Ød5	120 - Ød5		
	min. Vers. M	525 + B	68 + B	82 + B	30 + B	40 + B	50 + B		
	max. Vers. M	135 - B	135 - B	160 - B	96 - B	96 - B	116 - B		
В	max.		M10		M10				
D	min.	20	30	40	20	30	40		
	max.	98	98	118	85	85	105		
G	min.	18	21	32	18	210	32		
	max.	33	35	45	33	35	45		

Legend

W [°] = Angle of fastening boreholes A [mm] = Pitch circle diameter

= Thread size of fastening screw В

b = Innead size of lasterning sciew
 (version: M = thread, S = counterbore)
 D [mm] = Diameter of centring spigot
 E [mm] = Diameter of motor shaft

G [mm] = Length of motor shaft

Belt Gear

for freely selectable mounting dimensions

• Series OSP-E..SB, ..ST, ..SBR, ..STR Linear Drive with Screw

The toothed belt gear with its freely selectable mounting dimensions offers the possibility to fit most different types of motors to the linear drive parallel to the motor axis. After the flange dimensions of the motor had been checked, the mounting side of the motor will be prepared for the individual demands of the customer.

When ordering please observe the version of the drive shaft of the linear drive OSP-E with spindle. This version can either be ordered with plain shaft or plain shaft with keyway (Option). (If the version keyway is selected, the delivery period may be elongated.)

Max. allowed Moments M [Nm] for Belt Gear								
Size	Transmissio 1:1	n ratio 2:1						
25	5	5						
32	10	10						
50	20	20						

Beware of the max. allowed moments of the corresponding linear drive.

Dimension Table [mm] and Order Instructions

				-						
Series	L1	L2	L3	La		La		В	Ø F *	Order No.
				1:1	2:1					
OSP-E25	186	101	30	110	109.3		6, 7, 8, 9, 10, 11	15576		
OSP-E32	196	101	37	110	111.4	M4 – M10	8, 9, 10, 11, 12, 14	15576		
OSP-E50	234	101	50	135	133.7		12, 14, 16, 19	15576		
* other dia	amete	ers on	requ	Jest						

Variable Dimensions for Motor Mounting

Dimension table of the variable dimensions [mm]

W			45 °			90 °		
Size)	25 32		50	25	32	50	
А	min.		30		30			
	max. Vers. S		110 - Øds	5	70 - Ød5	70 - Ød5	80 - Ød5	
	max. Vers. M		110 - Ød4	1	70 - Ød4	70 - Ød4	80 - Ød4	
В	max.		M 8			M 8		
D	min.		20		20			
	max.	80	80	100	60	60	70	
G	min.	16	20	30	16	20	30	
	max.	23	30	40	23	30	40	
ØF	[mm]	6, 7, 8, 9, 10, 11	8, 9, 10, 11, 12, 14	12, 14, 16, 19	6, 7, 8, 9, 10, 11	8, 9, 10, 11, 12, 14	12, 14, 16, 19	

Accessories for Electric Linear Drives Series OSP-E

Mountings, Sensors

Contents

Description	Page
End Cap Mounting (OSP-EBHD)	128, 129
End Cap Mounting (OSP-EB,SB,ST)	130, 131
Flange Mounting C (OSP-ESBR,STR)	132
Profile Mounting for Multi-Axis systems (OSP-E)	133
Mid-Section Support (OSP-EBHD)	134
Mid-Section Support (OSP-E)	135
Adaptor Profile (OSP-E)	136
T-Nut Profile (OSP-E)	137
Connection Profile (OSP-E)	138
Trunnion Mounting EN (OSP-ESBR,STR)	139
Pivot Mounting EL (OSP-ESBR,STR)	139
Clevis Mounting (OSP-EB,SB,ST)	140
Clevis Mounting, low backlash (OSP-EB,SB,ST)	141
Inversion Mounting (OSP-EB,SB,ST)	142

OSP-E Series Electric Linear Drives and Guides End Cap Mounting

pairs.

DimensionTable [mm] and Order Instructions

Series	Туре	E	ØU	AB	AC	AD	AE	AF	AG	DG	Order No.*)
OSP-E20BHD	CN-20	27	6,6	40	10	20	20	22	-	74	16213
OSP-E25BHD	CN-25	27	6,6	52	16	25	25	22	-	91	12266
OSP-E32BHD	CN-32	36	9	64	18	25	25	30	-	114	12267
OSP-E50BHD	CN-50	70	9	48	12,5	30	30	48	128	174	12268

*) = Pair

Catalog 0950

DimensionTable[mm] and Order Instructions												
Series	Туре	ØU	AB	AC	AD	AE	AF	AG		DG	Order No. *)	
OSP-E20BHD	CO-20	6,6	18	15	22	42	45	39	11	40	16241	
OSP-E25BHD	CO-25	6,6	14	10	25	44	48	30	11	40	16245	
OSP-E32BHD	CO-32	9	19	12	28	60	62	42	15	56	16246	
OSP-E50BHD	CO-50	9	45	16	32	90	92	50	15	87	16247	

OSP-E Series Electric Linear Drives and Guides **End Cap Mounting**

End Cap Mounting

Size 20, 25, 32, 50

• Series OSP-E..BHD Linear Drive with Belt and Integrated Guide

On the end-face of each end cap there are eight threaded holes each for mounting the actuator.

Material: Anodized aluminium.

The mountings are supplied in pairs.

*) = Pair

End Cap Mounting

Size 25, 32, 50

• Series OSP-E..SBR, ..STR Linear Drive with Screw and extending rod

On the end-face of each end cap there are four threaded holes for mounting the actuator.

The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.

Material: Series OSP-25 to 32: Galvanised steel. Series OSP-50: Anodized aluminium.

The mountings are supplied as pairs

AD

OSP-E Series Electric Linear Drives and Guides

End Cap Mounting

DG

Series OSP-E25 to E32:Type A1

Dimension Table [mm] and Order Instruction

		-	-								
Series	E	ØU	AB	AC	AD	AE	AF	CL	DG	Order N Typ A1	o.*) TypC1
OSP-E25	27	5,8	27	16	22	18	22	2,5	39	2010	_
OSP-E32	36	6,6	36	18	26	20	30	3	50	3010	-
OSP-E50	70	9	40	12,5	24	30	48	-	86	-	5010

*) = Pair

Important:

With the OSP-E Screw series, the end cap mounting can only be used at the end opposite to the drive shaft.

We recommend the application of two mid section supports (page 135) at the drive shaft end of the actuator.

() ORIGA

Series OSP-E25SBR, 25STR to E32SBR, 32STR: Type A1SR

Series OSP-E50SBR, 50STR: Type C1SR

DimensionTa	able	e[m	m]a	and	Ord	ler l	nstr	ucti	on						
Series	ieries E ØU AB AC AD AE AF CL DG ØKU KV Order No.*) Type A1SR Type C1														
OSP-E25SBR,STR	27	5,8	27	16	22	18	22	2,5	39	-	_	12263	-		
OSP-E32SBR, STR	36	6,6	36	18	26	20	30	3	50	-	_	12264	-		
OSP-E50SBR, STR	70	9	40	12,5	24	30	48	-	86	15	15	-	12265		
													*)=single		

Important:

With the OSP-E Screw series, the end cap mounting can only be used at the end opposite to the drive shaft.

We recommend the application of two mid section supports (page 135) at the drive shaft end of the actuator.

End Cap Mounting

Size 25, 32, 50

• Series OSP-E..SBR, ..STR Linear Drive with Screw and extending rod

On the end-face of each end cap there are four threaded holes for mounting the actuator.

The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.

Material: Series OSP-25 to 32: Galvanised steel. Series OSP-50: Anodized aluminium.

The mountings are supplied as pairs

Flange Mounting C

Size 25, 32, 50

• Series OSP-E..SBR, ..STR Linear Drive with Screw and extending rod

The flange mounting C-E can only be mounted at the piston rod end of the linear drive.

Material: Aluminium

Series OSP-E25SBR, STR to E50SBR, STR: Type C-E..

Dimension Table [mm] and Order Instructions

Series	Туре	ø FB	E	MF	R	TF	UF	w	Order No.
OSP-E25SBR, STR	C-E25	7	50	10	32	64	79	16	12232
OSP-E32SBR, STR	C-E32	9	56	10	36	72	90	16	12233
OSP-E50SBR, STR	C-E50	12	100	16	63	126	153	21	12234

Series OSP-E25 to E50, Type MAE-.. OSP-E..B, ..SB, ..ST, ..SBR, ..STR

Series OSP-E20BHD to E50BHD, Type MAE-..

Profile Mountings for Multi-Axis Systems

Size 20, 25, 32, 50

• Series OSP-E

Material: Anodized aluminum

Stainless steel version on request.

The mountings are supplied in pairs.

Weight (mass)	[kg]
Series	Weight (mass)[kg] (pair)
MAE-20	0,3
MAE-25	0,3
MAE-32	0,4
MAE-50	0,8

Dimensi	onTable	[mm]	and	Orde	rInst	ructio	ons													
Series	Туре	R	U	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DT	EF	EM	EN	EQ	RE	Order No.
OSP-E20	MAE-20	M5	5.5	22	27	38	26	33.5	41	40	92	28	8	10	41,5	28.5	49	36	26	12278
OSP-E25	MAE-25	M5	5.5	22	27	38	26	40	47.5	40	92	34.5	8	10	41.5	28.5	49	36	26	12278
OSP-E32	MAE-32	M5	5.5	30	33	46	27	46	54.5	40	92	40.5	10	10	48.5	35.5	57	43	32	12279
OSP-E50	MAE-50	M6	7	48	40	71	34	59	67	45	112	52	10	11	64	45	72	57	44	12280

-Parker

ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com Catalog 0950 Accessories

Mid-Section Support Mid-Section Series OSP-E20BHD to E50BHD: Type E1 (Mounting with through holes) Support

Size 20, 25, 32, 50

• Series OSP-E ...BHD Linear Drive with Toothed Belt and integrated guide

Note on Types E1 and D1: The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the center of the actuator is different. For design notes, see page 17

Stainless steel version on request.

The mountings are supplied singly.

Dimens	ion	Table	e [mn	n] an	d Or	der lı	nstru	ctior	ıs													
Series	R	U	UU	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DS	DT	EF	EM	EN	EQ	RE	Order Type E1	No. Type D1
OSP-E20	M5	5.5	10	22	20.5	38	26	33.5	41	36	50	28	8	5.7	10	41.1	28.1	48.6	35.6	23	20009	20008
OSP-E25	M5	5.5	10	22	27	38	26	40	47.5	36	50	34.5	8	5.7	10	41.5	28.5	49	36	26	20009	20008
OSP-E32	M5	5.5	10	30	33	46	27	46	54.5	36	50	40.5	10	5.7	10	48.5	35.5	57	43	32	20158	20157
OSP-E50	M6	7	-	48	40	71	34	59	67	45	60	52	10	-	11	64	45	72	57	44	15536	15534

OSP-E Series Electric Linear Drives and Guides

Series OSP-E25, E32, E50, Type E1 (Mounting from above / below with 2 through holes)

Mid-Section Support

Size 25, 32, 50

- Series OSP-E..B Linear Drive with toothed Belt and intergrated Guides
- Series OSP-E..SB, ..ST, ..SBR, ..STR
- Linear Drive with Screw

Note on Types E1 and D1: The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the center of the actuator is different.

Stainless steel version on request

Dimension Table [mm] and Order Instructions AF Series R U UU DF DH DK DM DN DO DP DQ DR DS DT EF EM EΝ EQ Order No. Type E1 Type D1 OSP-E25 20009 20008 M5 10 22 27 38 40 47.5 50 34,5 8 41.5 28.5 49 36 5.5 26 36 5.7 10 OSP-E32 20158 20157 M5 5.5 30 33 46 27 46 50 40,5 10 5.7 10 48.5 35.5 57 43 10 54.5 36 OSP-E50 M6 40 72 7 48 71 34 59 67 45 60 52 10 11 64 45 57 20163 20162

- A universal attachment for
- mounting of additional items
- Solid material

The mountings are supplied singly.

()

DimensionTable [mm] and Order Instructions

Series	A	В	С	D	E	F	L	x	RE	Orde Standard	er No. Stainless
OSP-E20	16	23	32	M5	10.5	24	50	36	23	20006	20186
OSP-E25	16	23	32	M5	10.5	30.5	50	36	26	20006	20186
OSP-E32	16	23	32	M5	10.5	36.5	50	36	32	20006	20186
OSP-E50	20	33	43	M6	14	52	80	65	44	20025	20267

() ORIGA

OSP-E Series Electric Linear Drives and Guides **Adapter Profile**

OSP-E Series Electric Linear Drives and Guides T-Nut Profile

Series OSP-E25 to E50

T-Nut Profile

Size 20, 25, 32, 50

• Series OSP-E

T-Nut Profile OSP

• A universal attachment for mounting with standard T-nuts.

The mountings are supplied singly.

Dimensio	on Tal	ble [n	זm] ו	and	Orde	r Inst	ructio	ons				
Series	RE	TA	тв	тс	TD	TE	TF	TG	тн	TL	Orde Standard	r No. Stainless
OSP-E20	23	5	11.5	16	32	1.8	6.4	14.5	28	50	20007	20187
OSP-E25	26	5	11.5	16	32	1.8	6.4	14.5	34.5	50	20007	20187
OSP-E32	32	5	11.5	16	32	1.8	6.4	14.5	40.5	50	20007	20187
OSP-E50	44	8,2	20	20	43	4.5	12.3	20	58	80	20026	20268

OSP-E Series Electric Linear Drives and Guides Adapter Profile

Drive Profile

Size 25, 32, 50

to connect

- Series OSP-E with system profiles
- Series OSP-E with Series OSP-E or OSP-P

Dimension	Dimension lable [mm] and Order instructions														
Series	for the connection to the driver of	Α	В	С	D	E	F	G	Н	L	X	Order No.			
OSP-E25	OSP32-50	16	23	32	8.5	10.5	30.5	6.6	11	60	27	20850			
OSP-E32	OSP32-50	16	23	32	8.5	10.5	36.5	6.6	11	60	27	20850			
OSP-E50	OSP32-50	20	33	43	8	14	52	6.6	11	60	27	20851			

Х

Т

The mountings are supplied singly.

Connecting possibilities

Adaptor Profile

Series OSP-E25SBR, 25STR to 50SBR, 50STR: Type EN-..

Dimension Table [mm] and Order Instructions – for Trunnion Mounting EN-..

Series	Туре	I	øTD e9	TL	тм	UW	XV min	XV+ 1/2 Stroke	XV+ max. Stroke	Order No.
OSP-E25SBR, STR	EN-E25	50	12	12	63	42	73	83	62	12235
OSP-E32SBR, STR	EN-E32	50	16	16	75	52	76.5	90	69.5	12236
OSP-E50SBR, STR	EN-E50	80	20	20	108	87	110	110	84	12237

Trunnion Mounting EN Pivot Mounting EL

Size 25, 32, 50

• Series OSP-E..SBR, ..STR For Linear Drive with spindle drive and piston rod

The trunnion mounting is fitted to the dovetail rails of the actuator profile and is continuously adjustable in axial direction.

The mountings are supplied in pairs.

DimensionTable [mm] and Order Instructions - for Pivot Mounting EL-.. Series ØDH7 Weight Order Туре Α, В С **C**, øD, øD, Ε Α (mass) No. (kg) OSP-E25SBR, STR EL-032 55 36 20 26 13 12 13.5 8.4 9 0.06 PD23381 OSP-E32SBR, STR EL-040/050 PD23382 55 20 0.06 36 26 13 16 13.5 8.4 9 OSP-E50SBR,STR EL-063/080 65 42 25 30 20 10.5 11 0.10 PD23383 15 16.5

Trunnion Mounting EN

Pivot Mounting EL

Clevis Mounting

Size 25, 32, 50

- Series OSP-E..B For Linear Drives with Belt
- Series OSP-E-..SB, ..ST For Linear Drives with Screw

When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.

Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- Horizontal compensation

A stainless steel version is also available.

DimensionTable [mm] and Order Instructions

Series	J	Q	т	øR	нн	КК	LL	ММ	NN*	00	PP	SS	ST	TT	UU	Orde Standard	r No. Stainless
OSP-E25	117	16	M5	5.5	3.5	52	39	19	2	9	38	40	30	16	21	20005	20092
OSP-E32	152	25	M6	6.6	6	68	50	28	2	13	62	60	46	40	30	20096	20094
OSP-E50	200	25	M6	-	6	79	61	28	2	13	62	60	46	-	30	20097	20095

* Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

Series OSP-E25 to E32

Series OSP-E50

Clevis Mounting, Low Backlash

Size 25, 32, 50

- Series OSP-E..B Linear Drives with Belt
- Series OSP-E-..SB, ..ST Linear Drives with Screw

When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.

In the drive direction the clevis mounting has a low backlash fit.

Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- Horizontal compensation

A stainless steel version is also available.

Dimensio	Dimension Table [mm] and Order Instructions																
Series	J	Q	Т	øR	HH	КК	LL	ММ	NN*	00	PP	SS	ST	тт	UU	Orde Standard	r No. Stainless
OSP-E25	117	16	M5	5.5	3.5	52	39	19	2	9	49	40	30	16	21	20496	20498
OSP-E32	152	25	M6	6.6	6	68	50	28	2	13	69	60	46	40	30	20497	20499
OSP-E50	200	25	M6	-	6	79	61	28	2	13	69	60	46	-	30	20812	20818

* Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com

Inversion Mounting Size 25, 32, 50

• Series OSP-E..B For Linear Drive with Belt • Series OSP-E-..SB, ..ST

For Linear Drive with Screw

In dirty environments, or where there are special space problems, inversion of the cylinder is recommended. The inversion bracket transfers the driving force to the opposite side of the cylinder. The size and position of the mounting holes are the same as on the standard cylinder

Stainless steel version on request.

Please note:

Other components of the OSP system such as **mid-section supports**, **magnetic** switches can still be mounted on the free side of the cylinder.

Important Note: May be used in combination with Clevis Mounting, ref. dimensions on pages 139 & 140

DimensionTable (mm) and Order Instructions

Series	v	X	Y	вс	BE	вн	ВJ	zz	Order No.
OSP-E25	25	65	M5	117	31	43	33.5	6	20037
OSP-E32	27	90	M6	150	38	51	39.5	6	20161
OSP-E50	27	110	M6	200	55	65	52	8	20166

0 ORIGA

Accessories for Electric Linear Drives Series OSP-E

Mountings for Linear drive with guide

Contents

Description	Page
Overview mountings/guides	144
End Cap Mounting	145
Mid-Section Support	146

Overview

Mountings for Linear Drives with OSP-Guides

- Series OSP-E..B Linear Drive with Belt
- Series OSP-E..SB, ..ST Linear Drive with Screw *

	mount										
Overview											
Type of mounting des Zylinders	Туре	Vers SLIE PRC MUL 25	ions - DELIN DLINE TIBR 32	- OSF IE AKE 50	P-guid POV 25/ 25	e VERS 25/ 35	LIDE 25/ 44	32/ 35	32/ 44	50/ 60	50/ 76
End Cap Mounting	Type A1										
140 10 3	Type A2	0	ο								
	Туре АЗ				0	ο		ο			
End Cap Mounting reinforced	Type B1	x	x		x	x	x	x	x		
	Type B3										
	Type B4						ο		0		
End Cap Mounting	Type C1			x						x	x
	Type C2			ο							
	Туре СЗ									ο	
	Type C4										0
Mid-Section Support narrow	Type D1	x	x	x	x	x	x	x	x	x	x
Mid-Section Support wide	Type E1	x	x	x	x	x	x	x	x	x	x
	Type E2	0	o	o							
	Type E3				0	ο		0		0	
	Type E4						ο		0		0
X – mounting	nosition or	arriad	ia tan	*	Dioos	0 00					

X = mounting position carriage top (12 clock position)

O = mounting position carriage side (3 or 9 clock position)

available components

144

* Please note:

With series OSP-E-Spindle the end cap mountings A, B and C can only be fitted to the side opposite to the drive shaft. On the side of the drive shaft we recommend to use our mid-section supports (page 146).

() ORIGA

Series OSP – E25, E32: Type A

End Cap Mounting * At the end face of each end caps

At the end face of each end caps there are four holes with internal threads to fix the drive. The hole layout is square so that the drive can be fitted on the bottom, the top or either side.

The mountings are supplied in pairs.

Dimension Table [mm]

– Dimension AE and AF (Depending on type of mounting)												
Type of mount.	Dimens AE at size	ion		AF at size								
	25	32	50	25	32	50						
A1	18	20	-	22	30	-						
A2	33	34	-	37	44	-						
A3	45	42	-	49	52	-						
B1	42	55	-	22	30	-						
B3	-	-	-	-	-	-						
B4	80	85	-	60	60	-						
C1	-	-	30	-	-	48						
C2	-	-	39	-	-	57						
C3	-	-	54	-	-	72						
C4	-	-	77	-	-	95						

Series OSP - E50: Type C

DimensionTable[mm]

Series	E	øU	AB	AC	AD	CL	D
OSP-E25	27	5.8	27	16	22	2.5	39
OSP-E32	36	6.6	36	18	26	3	50
OSP-E50	70	9	40	12.5	24	-	86

* see survey for mounting types on page 144

Material: series OSP-25, 32: steel, zinc galvanized series OSP-50: aluminium, anodized

OSP-E Series Electric Linear Drives and Guides **Mid-Section Support**

Mid-Section Support

Information on type E1 and D1:

The mid-section supports can also be fitted to the bottom side of the drive. In this case please observe the new center line dimensions of the drive.

For layout information please refer to pages 104, 107 & 111

Stainless version on request.

Dimension Table [mm]

Туре

mount.

of

D1

E1

E2

E3

E4

Dimensions DR

32

10

24

32

40

_

at size

25

8

23

35

46

- Dimension DR and AF (Depending on type of mounting)

50

_

10

19

31

57

AF

25

22

22

37

49

60

at size

32

30

30

44

52

60

50

48

48

57

72

95

Series OSP-E25, E32, E50: Type D1 (Mounting with internal thread)

DimensionTable[mm]

Series	R	U	UU	DE	DF	DH	DK	DM	DN	DO	DP	DQ	DS	DT	EF	ЕМ	EN	EQ
OSP-E25	M5	5.5	10	16	27	38	26	40	47.5	36	50	34.5	5.7	10	41.5	28.5	49	36
OSP-E32	M5	5.5	10	16	33	46	27	46	54.5	36	50	40.5	5.7	10	48.5	35.5	57	43
OSP-E50	M6	7	-	23	40	71	34	59	67	45	60	52	-	11	64	45	72	57

Order Instructions for Mountings Type A – Type B – Type C – Type D – Type E

Type of mounting (Versions)	Order No. Size								
	25	32	50						
A1 *1)	2010	3010	-						
A2*1)	2040	3040	-						
A3 *1)	2060	3060	-						
B1 *1)	20311	20313	-						
B3 ^{*1)}	-	-	-						
B4*1)	20312	20314	_						
C1 *1)	_	-	5010						
C2 ^{*1)}	-	-	20349						
C3 ^{*1)}	-	-	20350						
C4 ^{*1)}	_	_	20351						
D1 ^{*2)}	20008	20157	20162						
E1 ^{*2)}	20009	20158	20163						
E2 ^{•2)}	20352	20355	20361						
E3 ^{•2)}	20353	20356	20362						
E4 ^{•2})	20354	20357	20363						

*1) The mountings are supplied in pairs

*2) The mountings are supplied simply

ORIGA

Accessories for Linear Drives Series OSP-E

Piston Rod Mountings

Contents

Description	Page
Piston Rod Eye according to ISO 8139	148
Piston Rod Clevis according to ISO 8140	148
Piston rod Compensating Coupling	149

OSP-E Series Electric Linear Drives and Guides **Piston Rod Eye**

Piston Rod Eye according to ISO 8139

• Series OSP-E..SBR, ..STR Linear Drive with Screw and Piston Rod

Piston Rod Eye according to ISO 8139 (CETOP RP103 P)

Order Instructions, Dimension Table [mm], Weight

Series	Туре	A	CE	øCN	EN	ER	КК	LE	SW	U	W	øZ ₁	Weight [kg]	Order No.
OSP-E25SBR, STR	GA-M10x1.25	20	43	10	14	14	M10x1.25	15	17	10.5	57	15	0.072	KY 6147
OSP-E32SBR, STR	GA-M10x1.25	20	43	10	14	14	M10x1.25	15	17	10.5	57	15	0.072	KY6147
OSP-E50SBR, STR	GA-M16x1.5	28	64	16	21	21	M16x1.5	22	22	15	85	22	0.21	KY 6150

Piston Rod Clevis according to ISO 8140

 Series OSP-E..SBR, ..STR Linear Drive with Screw and Piston Rod

Piston Rod Clevis according to ISO 8140 (CETOP RP102P) Type: GK-..

Order Instructions, Dimension Table [mm], Weight

Series	Туре	øCK	CE	CL	СМ	кк	LE	W	Weight[kg]	Order No.
OSP-E25SBR, STR	GK-M10x1.25	10	40	20	10	M10x1.25	20	52	0.08	KY6135
OSP-E32SBR, STR	GK-M10x1.25	10	40	20	10	M10x1.25	20	52	0.08	KY6135
OSP-E50SBR, STR	GK-M16x1.5	16	64	32	16	M16x1.5	32	83	0.30	KY6139

() ORIGA

Catalog 0950 Dimensions & Ordering Information

Piston Rod compensating coupling

SW5

SW1

B

Type: AK-..

S The second sec

Radial compensation of the center axis

SW4

<u>е</u> С

<u>/sw2</u>

D

/sw3

Piston Rod Compensating Coupling

 Series OSP-E..SBR, ..STR Linear Drive with Screw and Piston Rod

Order Instructions, Dimension Table [mm], Weight														
Series	Туре	В	С	D±2	E	ØF	КК	SW1	SW2	SW3	SW4	SW5	Weight [kg]	Order No.
OSP-E25SBR, STR	AK-M10x1.25	20	23	73	31	21,5	M10x1.25	12	30	30	19	17	0.218	KY 1129
OSP-E32SBR, STR	AK-M10x1.25	20	23	73	31	21,5	M10x1.25	12	30	30	19	17	0.218	KY 1129
OSP-E50SBR, STR	AK-M16x1.5	40	32	108	45	33,5	M16x1.5	19	41	41	30	30	0.637	KY 1133

Accessories for Electric Linear Drives Series OSP-E

Magnetic Switches SFI-plus Displacement Measuring System

Contents

Description	Page
Magnetic Switches Types RS, ES	153-156
SFI-plus Displacement Measuring System	157-159
Cable Cover	160

Characteristics

Characteristics		Symbol	Lipit	Description	
Flectrical Characteristic	e	Symbol	Onit		
	ə 	V			
	U _B	v	10-240 AC/DC (NO) 10-150 AC/DC (NC) 10-70 AC/DC (NO/NC)**	10-30 DC	
Connection			Two wire	Three wire	
Switching function			Normally open (NO) Normally closed (NC)	NPN (NO) PNP (NC)	
Max. permanent switching current	I _{Dmax}	mA	200	200	
Max. switching capacity	VA (W)	10 VA	_		
Residual voltage at I _{Lmax}		V	< 3	< 3	
Max. current consumption		mA	—	< 20	
Status indicator			LED, yellow		
Typical switching time		ms	On:<2	On:<2	
Switch-off delay		ms	_	approx.25	
Polereversal			LED without function	—	
Pole reversal protection			—	builtin	
Short circuit protection			—	builtin	
Switchable capacity		μF	0.1 at 100 Ω, 24 VDC		
Switching distance		mm	approx.15	approx.15	
Hysteresis for OSP		mm	approx.8	approx.3	
Mechanical Characterist	ics				
Housing			Macrolon, grey		
Insulation class			F to VDE 0580		
Connection*) Type RS-K			Cable, 5 m long		
Type RS-S			3-pole Connector M8, Cable length ca. 100mm** Cable length ca. 1		
Cable cross section (highly flexible)		mm²	2x0.14	3x0.14	
Cable (highly flexible *)			PVC	PUR, black	
Wire colors			brown AC/DC+ blue or white signal output	Pin 1 = +, brown Pin 3 = 0 V, blue Pin 4 = Signal black or white	
Minimum permissible					
of cable moving		mm	<i>≥2</i> 0 ≥70		
Switching point accuracy	mm	±0.2			
Temperature range *) ¹⁾	_{ອ້min} ປີ	°C °C	-25 other temperature ranges		
Service life, switching cycles	max		3 x 10 ⁶ up to 6 x 10 ⁶	theoretically unlimited	
Electrical protection		IP	67 according to DIN	EN 60529	
Shock resistance			m/s ² (contact switches)	100 500	
Weight (mass)		ka	0.12		
troight (mass)		פיין	0.12		

Magnetic **Switches**

Type RS-. Type ES-.

For electrical sensing of the carrier position, e.g. at the end positions, magnetic switches may be fitted. The magnetic switches can as well be used as cut-out switches for a lot of intermediate positions.

Position sensing is contactless and is based on magnets fitted as standard to the carrier. A yellow LED indicates operating status.

Piston speed and switching distance affect signal duration and should be considered in conjunction with the minimum reaction time of ancillary control equpiment. In accordance to this, the contact travel must be included in the calculation.

*) other versions on reque-**)RS with connector (RS-S) other versions on request

for the magnetic switch temperature range, please take into account the surface temperature and the self-heating properties of the linear drive.

Magnetic Switches RS and ES

Electrical Service Life Protective Measures

Type RS magnetic switches are sensitive to excessive currents and inductions. With high switching frequencies and inductive loads such as relays, solenoid valves or lifting magnets, service life will be greatly reduced.

With resistive and capacitative

loads with high switch-on current, such as light bulbs, a protective resistor should be fitted. This also applies to long cable lengths and voltages over 100 V.

In the switching of inductive loads such as relays, solenoid valves and lifting magnets, voltage peaks (transients) are generated which must be suppressed by protective diodes, RC loops or varistors.

Connection Examples

Load with protective circuits

- (a) Protective resistor for light bulb
- (b) Freewheel diode on inductivity
- (c) Varistor on inductivity

For the type ES, external protective circuits are not normally needed.

Type RS

In the type RS contact is made by a mechanical reed switch encapsulated in glass.

Dimensions [mm]-Type ES-S/RS-S**

**Operating voltage max. 70 V

Length of connection cable with length tolerance

•	•	
Sensor Order No.	Nominal cable length	max. Length tolerance
KL3087	100 mm	-20 mm
KL3047	100 mm	-20 mm
KL3054	100 mm	-20 mm
KL3060	145 mm	±5mm
KL3048	5000 mm	-50 mm
KL3045	5000 mm	-50 mm

Electrical Connection Type RS

Electrical Connection Type ES

Type ES

In the type ES contact is made by an electronic switch – without bounce or wear and protected from pole reversal. The output is short circuit proof and insensitive to shocks and vibrations.

() ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parkeroriga.com

Dimensions for magnetic switch set Series OSP-E..BV

When arranging the magnetic switches, please mind the position of the magnets integrated in the carrier as a function of the operating direction. "M" indicates where magnet is fitted in carrier.

Magnetic switch and magnet are externally fitted to the OSP-E..BV.

For this purpose please order the magnetic switch set (consisting of 2 magnetic switches, 1 fastening rail and 2 magnets) for contactless position sensing.

ORIGA

Dimension Table (mm)

Series	Dimen	Dimension					
	RC	RD	RE	MA	MB	МС	MD
OSP-E20BHD	41.5	26.6	23	-	-	-	-
OSP-E25BHD	51	27	26	-	-	-	-
OSP-E32BHD	63	34	32	-	-	-	-
OSP-E50BHD	87	48	34	-	-	-	-
OSP-E20BV	-	-	-	46	23.7	42.3	35
OSP-E25BV	-	-	-	56	26	51	35
OSP-E25*	25	27	-	-	-	-	-
OSP-E32*	31	34	-	-	-	-	-
OSP-E50*	43	48	-	-	-	-	-
* =B,SB,ST,SBR,STR							

Order Instructions

			~		
Description	Function	Series	Cable Length [mm]	Туре	Order No.
Magnetic switches, Reed contact, with M8-Connector PIN 3 neutral	NC 1+ 4	all*	100	RS-S	KL3087
(ES-S compatible connector)	NO 1+ 4	all*	100	RS-S	KL3047
Magnetic switches, Reed contact, with cable	NC bn+ max.150V/0.2A	all*	5000	RS-K	KL3048
	NO bn+	all*	5000	RS-K	KL3045
	NC bn+	OSP-ESTR	5000	RS-K	KL3096
Magnetic switches, electronical with M8-connector	NPN (NO)	all*	100	ES-S	KL 3060
		all*	100	ES-S	KL 3054
	PNP (NC)	OSP-ESTR	100	ES-S	KL 3098
Magnetic switch set **	NC 1+ 4	OSP-EBV	2 x 100	RS-S	15886
Connecting cable					
suitable for cable chain			5000		KL3186
suitable for cable chain			10000		KL3217
suitable for cable chain			15000		KL3216
standard			5000		4041
standard			10000		KL9074

* = except for OSP-E..STR

** = consisting of 2 magnetic switches KL 3087, 1 fastening rail, 2 magnets

Characteristics

	1.1	Description
Characteristics	Unit	Description
Iype		21210
Output function		
Resolution	mm	0.1
Pole length scale	mm	5
Max. speed	m/s	10
Repeating accuracy	_	± 1 increment
Distance sensor/scale mm		≤4
Tangential deviation	≤ 5°	
Possible lateral deviation	mm	≤±1.5
Switching output		PNP
Electrical Characteristics	_	
Operating voltage U _b	V DC	18 – 30
Voltage drop	V	≤2
Continuous current per output	mA	≤20
Power consumption at $U_b = 24V$, switched on, no-load	mA	≤ 50
Short-circuit protection		yes
Reverse voltage protection		yes
Protection against inductive switch-off peak		yes
Power-up pulse suppression		yes
EMC		
Electrostatic discharge	kV	6, B, according to EN 61000-4-2
Electromagnetic field	V/m	10, A, according to EN61000-4-3
Fast transients signals, burst (signal connections)	kV	1, B, according to EN 61000-4-4
Fast transients signals, burst (DC-connections)	kV	2, B, according to EN 61000-4-4
EMC immunity, surge (signal-connections)	kV	1, B, according to EN 61000-4-5
EMC immunity, surge (DC-connections)	kV	0,5, B, according to EN 61000-4-5
HF cable fed	V	10, A, according to EN 61000-4-6
Magnetic field at 50 Hz	A/m	30, A, according to EN 61000-4-8
Radio frequency interference		according to EN 61000-6-4
Radiated disturbances		according to EN 55011, group 1, A
Mechanical parameters		
Housing		Aluminium
Cable length	m	5.0 – fixed, open end
Cable cross-section	mm ²	4 x 0.14
Type of cable		PUR, black
Bending radius	mm	≥ 36
Weight (mass)	ka	approx. 0.165
Ambient conditions/shock resis	stance	
Encapsulation class	IP	67 according to EN60529
Ambient temperature range		°C -25 to +80
Broad band noise according to EN 60068-2-64	g	5.5 Hz to 2 kHz, 0.5 h per axis
Vibration according to EN 60068-2-6	g	12, 10 Hz to 2 kHz, 2 mm, 5 h per axis
Shock acc. EN 60068-2-27	g	100, 6 ms, 50 shocks per axis
Continuous shock according to EN 60068-2-29	g	5, 2 ms, 8000 shocks per axis

Displacement Measuring System

for automated movement

ORIGA-Sensoflex

(Incremental Displacement Measuring System)

Series SFI-plus

- Series OSP-E..SB Linear Drive with with ball screw
- Series OSP-E..ST Linear Drive with trapezoidal screw

Special properties:

- contactless, magnetic displacement measuring system
- freely selectable displacement length up to 32 m
- resolution 0,1 mm
- displacement speed up to 10 m/s
- suited for linear and gyratory movements
- for almost all control and display units with suitable counter input

The magnetic displacement measuring system SFI-plus consists of 2 main components:

- Measuring scale self-adhesive, magnetic measuring scale
- Sensing head converts the magnetic poles into electric signals which are then processed by counter inputs downstream (e.g. PLC, PC, digital counters)

Sensing head

The sensing head supplies two pulsating, 90° out of phase counter signals (phase A/B) with a resolution of 0,4 mm (option 4 mm). External pulse edge control can improve the resolution to 0.1.mm (option 1 mm). The counting direction automatically results from the phase shift of the counter signal.

Dimensions [mm] – Reading Head

Electric connection			
colour	Designation		
bn = brown	+ DC		
bl = blue	– DC		
bk = black	phase A		
wt = white	phase B		

SFI-plus in connection with electric linear drives of series OSP-E..ST

The SFI-plus can be mounted directly to the electric linear drive of series OSP-E..ST by means of a special mounting kit.

The position of the sensing head is generally staggered by 90° to the carrier.

For later installation a corresponding carrier kit with threaded holes can be ordered.

SFI-plus in connection with electric linear drives of series OSP-E..SB

The displacement measuring system in connection with series OSP-E..SB can only be retrofitted, if the system is reconditioned by the manufacturer.

Dimensions – in combination with OSP-E linear drives

Dimension Table [mm]

Series	Α	В	С	D	F	G	н
OSP-E25SB, ST	32	39	23	50	38	5.5	40
OSP-E32SB, ST	37.5	46	30	50	38	6.5	40
OSP-E50SB, ST	49.5	55	39	50	38	6.5	40

158

Order Instructions

Description	Order No.
Sensing head with measuring scale - resolution 0.1 mm (please indicate scale length)	21240
Sensing head - resolution 0.1 mm (spare part)	21210
Measuring scale per meter for (to be replaced)	21235
Mounting kit for OSP-P25	21213
Mounting kit for OSP-P32	21214
Mounting kit for OSP-P50	21216

* The overall length of the measuring scale results from the dead length of the linear drive and the stroke length. For dead lengths for linear drives of series OSP-E see table.

Series	Dead lengths
	[mm]
OSP-E25SB, ST	154
OSP-E32SB, ST	196
OSP-E50SB, ST	280

Example:

Linear Drive OSP-E, Ø25 mm, stroke 1000 mm

Dead length + stroke = overall length of the measuring scale 154 mm + 1000 mm = 1154 mm

OSP-E Series Electric Linear Drives and Guides Cable Cover

Cable Cover Size 20, 25, 32, 50

For clean guidance of magnetic switch cables along the cylinder body. Contains a maximum of 3 cables with diameter 3 mm.

Material: Plastic Colour: Red Temperature Range: -10 bis +80°C

Series OSP-E..BHD - Dimensions [mm]

DimensionTable [mm] and Order Instructions

for Series				Order No.
	RC	RD	RE	
OSP-E25*	23.5	25.5	-	13039
OSP-E32*	29.5	32	-	
OSP-E50*	41.5	46.5	-	Minimum length: 1m
OSP-E20BHD	23	25	40	Multiple profiles can
OSP-E25BHD	26	25.5	49.5	be used.
OSP-E32BHD	32	32	61.5	
OSP-E50BHD	44	46.5	85.5	

* B, SB, ST, SBR, STR

ORIGA

Gearboxes & Motor Mounts

Contents

Description	Page
Gearbox for BHD Series	162-164
Gearbox for OSP-E Belt	165-168
Motor Mounts	169-170

() ORIGA

PLANETARY GEARBOX FOR THE OSP-E BHD HEAVY DUTY ACTUATOR

A gearbox-mounting flange allows the LP series gearbox to be mounted directly to the actuator, eliminating the need for a coupling.

Motor mounting flange and reducing bush are custom made to suit the motor.

Please specify the motor manufacturer and model when ordering.

Note maximum shaft diameter below!

OSP-E BHD Heavy Duty Belt Gearbox				Series LP050 (BHD 20)	Series LP070 (BHD25)	LP090 (BHD32)	LP120 (BHD50)			
Neminal Output Tangua	TOr	Nm	5:1, 25:1, 50:1	5.7 (50.4)	32 (283)	80 (708)	200 (1770)			
Nominal Output Torque	12n	(lb-in)	3:1, 10:1, 15:1, 30:1, 100:1	5.2 (46)	15 (133)	35 (310)	90 (797)			
Maximum Acceleration	тор	Nm	5:1, 25:1, 50:1	12 (106.5)	32 (283)	80 (708)	200 (1770)			
Torque	120	(lb-in)	3:1, 10:1, 15:1, 30:1, 100:1	11 (97.4)	29 (257)	72 (637)	180 (1593)			
Nominal Speed	n1max	RPM		4000	3700	3400	2600			
Maximum Speed	n1n	RPM		8000	6000	6000	4800			
		arcmin	1-stage: 3, 5, 10	< 12						
Standard Output Backlash	j		2-stage: 15, 25, 30, 50, 100	< 15						
		kg	1-stage		1.9 (4.2)	4.1 (9)	9 (19.8)			
weight	m	(lb)	2-stage		2.2 (4.9)	5.1 (11.2)	11.2 (24.7)			
		kgcm ²	1-stage	62.15 (0.055)	0.28 (0.096)	1.77 (0.604)	5.42 (1.85)			
Mass Moment of Inertia	JI	(lb-in²)	2-stage	62.15 (0.055)	0.28 (0.096)	1.78 (0.608)	5.49 (1.874)			
Maximum Motor Shaft Diameter		mm (ins)		11 (.433)	16 (0.6299)	24 (0.9448)	32 (1.2598)			
Ratios Available	Ratios Available			1-stage: 5, 10 1-stage: 3, 5, 10 2-stage: 25, 50, 100 2-stage: 15, 25, 30, 50, 100						
Efficiency at Load			1-stage: >97% 2-stage: >95%							
Average Lifetime			20,000 hours							
Lubrication			Flow Grease							
Protection Rating			IP 64							

Туре	pe Available Ratio		W*	Weight Kg
LP 050				
Single Stage	5, 10	72/79	50	0.75
Double Stage	25, 50, 100	87.5/94.5	50	0.95
LP 070				
Single Stage	5, 10	96/103	70	3.3
Double Stage	25, 50, 100	116/123	70	3.6
LP 090				
Single Stage	3, 5, 10	115/125	90	5.5
Double Stage	15, 25, 30, 50, 100	141.5/151.5	90	6.5
LP 120				
Single Stage	3, 5, 10	148/158	120	10.4
Double Stage	15, 25, 30, 50, 100	180.5/190.5	120	12.6

L* Overall length will vary depending on the motor

W* Standard dimension may vary depending on the motor Above dimensions are for reference only. Consult factory for further information on all Gear Heads.

Order Number for OSP-E BHD Gearbox

ALWAYS STATE EXACT MOTORTYPE WHEN ORDERING GEAR!

Description		Reduction	Order Number			
Planetary Gear	LP 050 1-stage	5:1	LP050-M01-5			
	LP 050 1-stage	10:1	LP050-M01-10			
LP50 for BHD20	LP 050 2-stage	25:1	LP050-M02-25			
	LP 050 2-stage	50:1	LP050-M02-50			
Planetary Gear	LP 070 1-stage	I=3:1	80001240			
	LP 070 1-stage	i=5:1	80001252			
	LP 070 1-stage	i=10:1	80001253			
	LP 070 2-stage	l=15:1	80001242			
LP70 for BHD25	LP 070 2-stage	i=25:1	80001254			
	LP 070 2-stage	I=30:1	80001243			
	LP 070 2-stage	i=50:1	80001255			
	LP 070 2-stage	i=100:1	80001256			
	LP 090 1-stage	I=3:1	80001244			
	LP 090 1-stage	i=5:1	80001216			
	LP 090 1-stage	i=10:1	80001257			
	LP 090 2-stage	I-15:1	80001245			
LP90 for BHD32	LP 090 2-stage	i=25:1	80001258			
	LP 090 2-stage	I=30:1	80001246			
	LP 090 2-stage	i=50:1	80001259			
	LP 090 2-stage	i=100:1	80001260			
	LP 120 1-stage	I=3:1	80001247			
	LP 120 1-stage	i=5:1	80001250			
	LP 120 1-stage	i=10:1	80001261			
	LP 120 2-stage	l=15:1	80001248			
	LP 120 2-stage	i=25:1	80001262			
	LP 120 2-stage	I=30:1	80001249			
	LP 120 2-stage	i=50:1	80001263			
	LP 120 2-stage	i=100:1	80001264			

Gearbox Mounting Flanges -See New Ordering Instructions Position 4 for Shaft Type

		Shaft Type	
Gearbox flange to mount the LP series to BHD	LP 050	K,L,M,N	16224
	LP70 for BHD25	K,L,M,N	12311
	LP90 for BHD32	K,L,M,N	12312
	LP120 for BHD50	K,L,M,N	12313

PLANETARY GEARBOX FOR THE OSP-E BELT ACTUATOR

A gearbox mounts directly to the actuator, eliminating the need for a coupling.

A simple adaptor flange and bushing allows for use of 23 and 34 frame stepper motors from Applied Motion Products. Additional flanges available for Yaskawa SGMPH 01, 02 and 04 Servo Motors.

The gearbox input shaft connects directly to the motor shaft and is secured using a split-clamping ring.

OSP-E Belt Gearbox		Series AL				
	TOP	Nm	3:1, 10:1	22 (195)		
Nominal Output Torque	12n	(lb-in)	5:1, 7:1	20 (177)		
Maximum Acceleration Torque	T2B	Nm	3:1, 10:1	44 (389)		
	120	(lb-in)	5:1, 7:1	40 (354)		
Nominal Speed	n1max	RPM		3100		
Maximum Speed	n1n	RPM		6000		
Standard Output Backlash	j	arcmin	3:1 - 10:1	≤ 12		
Weight	m	kg (lb)	1-stage	1.7 (3.75)		
			i = 3	0.29 (0.1)		
Mass Moment of Inertia	J1	kgcm² (lb-in²)	i = 5	0.29 (0.1)		
			i = 7,10	0.29 (0.1)		
Ratios Available			1-stage: 3, 5,	7, 10		
Efficiency at Load			1-stage: 97	%		
Average Lifetime			> 20,000 hc	ours		
Lubrication		Synthetic Gre	ease			
Protection Rating		IP 65				
Operating Temperature			-10°C to 90°C			

Planetary Gearbox Dimensions

Actuator and Type	Available Ratio	Available L Ratio Max		Weight Kg
25 Belt/Ballscrew				
Nema 23	3, 5, 7, 10	114.5	70	2.02
Nema 34	3, 5, 7, 10	122.0	85	2.24
SGMPH 01	3, 5, 7, 10	113.5	70	2.0
SGMPH 02/04	3, 5, 7, 10	124.0	80	2.22
32 Belt/Ballscrew				
Nema 23	3, 5, 7, 10	114.5	70	2.02
Nema 34	3, 5, 7, 10	122.0	85	2.24
SGMPH 01	3, 5, 7, 10	113.5	70	2.0
SGMPH 02/04	3, 5, 7, 10	124.0	80	2.22
50 Belt/Ballscrew				
Nema 23	3, 5, 7, 10	114.5	70	2.02
Nema 34	3, 5, 7, 10	122.0	85	2.24
SGMPH 01	3, 5, 7, 10	113.5	70	2.0
SGMPH 02/04	3, 5, 7, 10	124.0	80	2.22

Gear Heads have hollow shafts and do not require gearbox mounts Gear Heads are not to be used with BHD model actuators

Above dimensions are for reference only. Consult factory for further information on all Gear Heads.

ORIGA

Order Number for OSP-E Belt and Ballscrew Gearbox

Order Numbers	Description
25 Belt Actuator	
AL00003-B2523A	Gearbox 3:1 Ratio 25 Belt .250 motor shaft
AL00005-B2523A	Gearbox 5:1 Ratio 25 Belt .250 motor shaft
AL00007-B2523A	Gearbox 7:1 Ratio 25 Belt .250 motor shaft
AL00010-B2523A	Gearbox 10:1 Ratio 25 Belt .250 motor shaft
AL00003-B2523	Gearbox 3:1 Ratio 25 Belt .375 motor shaft
AL00005-B2523	Gearbox 5:1 Ratio 25 Belt .375 motor shaft
AL00007-B2523	Gearbox 7:1 Ratio 25 Belt .375 motor shaft
AL00010-B2523	Gearbox 10:1 Ratio 25 Belt .375 motor shaft
AL00003-B2534	Gearbox 3:1 Ratio 25 Belt .375 motor shaft
AL00005-B2534	Gearbox 5:1 Ratio 25 Belt .375 motor shaft
AL00007-B2534	Gearbox 7:1 Ratio 25 Belt .375 motor shaft
AL00010-B2534	Gearbox 10:1 Ratio 25 Belt .375 motor shaft
32 Belt Actuator	
AL00003-B3223A	Gearbox 3:1 Ratio 32 Belt .250 motor shaft
AL00005-B3223A	Gearbox 5:1 Ratio 32 Belt .250 motor shaft
AL00007-B3223A	Gearbox 7:1 Ratio 32 Belt .250 motor shaft
AL00010-B3223A	Gearbox 10:1 Ratio 32 Belt .250 motor shaft
AL00003-B3223	Gearbox 3:1 Ratio 32 Belt .375 motor shaft
AL00005-B3223	Gearbox 5:1 Ratio 32 Belt .375 motor shaft
AL00007-B3223	Gearbox 7:1 Ratio 32 Belt .375 motor shaft
AL00010-B3223	Gearbox 10:1 Ratio 32 Belt .375 motor shaft
AL00003-B3234	Gearbox 3:1 Ratio 32 Belt .375 motor shaft
AL00005-B3234	Gearbox 5:1 Ratio 32 Belt .375 motor shaft
AL00007-B3234	Gearbox 7:1 Ratio 32 Belt .375 motor shaft
AL00010-B3234	Gearbox 10:1 Ratio 32 Belt .375 motor shaft
50 Belt Actuator	
AL00003-B5023	Gearbox 3:1 Ratio 50 Belt .375 motor shaft
AL00005-B5023	Gearbox 5:1 Ratio 50 Belt .375 motor shaft
AL00007-B5023	Gearbox 7:1 Ratio 50 Belt .375 motor shaft
AL00010-B5023	Gearbox 10:1 Ratio 50 Belt .375 motor shaft
AL00003-B5034	Gearbox 3:1 Ratio 50 Belt .375 motor shaft
AL00005-B5034	Gearbox 5:1 Ratio 50 Belt .375 motor shaft
AL00007-B5034	Gearbox 7:1 Ratio 50 Belt .375 motor shaft
AL00010-B5034	Gearbox 10:1 Ratio 50 Belt .375 motor shaft

() ORIGA

Order Number for Yaskawa Metric Frame Motors Gearbox

Order Numbers	Description
25 Belt Actuator	
AL00003-B2501	Gearbox 3:1 Ratio 25 Belt SGMPH01 Motor
AL00005-B2501	Gearbox 5:1 Ratio 25 Belt SGMPH01 Motor
AL00007-B2501	Gearbox 7:1 Ratio 25 Belt SGMPH01 Motor
AL00010-B2501	Gearbox 10:1 Ratio 25 Belt SGMPH01 Motor
AL00003-B2504	Gearbox 3:1 Ratio 25 Belt SGMPH02/04 Motor
AL00005-B2504	Gearbox 5:1 Ratio 25 Belt SGMPH02/04 Motor
AL00007-B2504	Gearbox 7:1 Ratio 25 Belt SGMPH02/04 Motor
AL00010-B2504	Gearbox 10:1 Ratio 25 Belt SGMPH02/04 Motor
32 Belt Actuator	
AL00003-B3201	Gearbox 3:1 Ratio 32 Belt SGMPH01 Motor
AL00005-B3201	Gearbox 5:1 Ratio 32 Belt SGMPH01 Motor
AL00007-B3201	Gearbox 7:1 Ratio 32 Belt SGMPH01 Motor
AL00010-B3201	Gearbox 10:1 Ratio 32 Belt SGMPH01 Motor
AL00003-B3204	Gearbox 3:1 Ratio 32 Belt SGMPH02/04 Motor
AL00005-B3204	Gearbox 5:1 Ratio 32 Belt SGMPH02/04 Motor
AL00007-B3204	Gearbox 7:1 Ratio 32 Belt SGMPH02/04 Motor
AL00010-B3204	Gearbox 10:1 Ratio 32 Belt SGMPH02/04 Motor
50 Belt Actuator	
AL00003-B5001	Gearbox 3:1 Ratio 50 Belt SGMPH01 Motor
AL00005-B5001	Gearbox 5:1 Ratio 50 Belt SGMPH01 Motor
AL00007-B5001	Gearbox 7:1 Ratio 50 Belt SGMPH01 Motor
AL00010-B5001	Gearbox 10:1 Ratio 50 Belt SGMPH01 Motor
AL00003-B5004	Gearbox 3:1 Ratio 50 Belt SGMPH02/04 Motor
AL00005-B5004	Gearbox 5:1 Ratio 50 Belt SGMPH02/04 Motor
AL00007-B5004	Gearbox 7:1 Ratio 50 Belt SGMPH02/04 Motor
AL00010-B5004	Gearbox 10:1 Ratio 50 Belt SGMPH02/04 Motor

168

Catalog 0950 **Dimensions**

OSP-E Series Electric Linear Drives and Guides Motor Mounts for OSP-E Belt & Ballscrew

The coupling housing is the mounting base for the motor and includes a self aligning coupling.

Motor flanges and couplings suitable for the available range of servo and stepper motors will be found together with technical data and dimensions on motors and drives, see separate data sheet.

Motor Mount	Motor Shaft Diameter	Size	Туре	Motor Type	Α	С	D	Е
MES-2504	14mm	25	Belt	Metric 04	95.7	70	70	70
MES-3204	14mm	32	Belt	Metric 04	86.7	70	70	70
MES-5004	14mm	50	Belt	Metric 04	86.7	70	90	70
MES-5008	16mm	50	Belt	Metric 08	114.7	90	90	90
MEI-2523	.250"	25	Belt	Nema 23	76.7	70	70	70
MEI-3234	.375"	32	Belt	Nema 34	88.7	90	70	90
MEI-5034	.375"	50	Belt	Nema 34	83	90	90	90
MGM-3234	.750"	32	Belt	Nema 34	88.7	90	70	90
MGM-5034	.750"	50	Belt	Nema 34	88.7	90	90	90
MAS-2501	8mm	25	Screw	Metric 01	51.4	42	42	42
MAS-3204	14mm	32	Screw	Metric 04	86.7	70	70	70
MAS-5004P	14mm	50	Screw	Metric 04P**	88.7	90	90	90
MAS-5008	14mm	50	Screw	Metric 08	88.7	90	90	90
MAI-2517	5mm	25	Screw	Nema 17	51.4	42	42	42
MAI-3223	.250"	32	Screw	Nema 23	76.7	70	70	70
MAI-5034	.375"	50	Screw	Nema 34	88.7	90	90	90
MAS-5008P	16mm	50	Screw	Metric 08P**	88.7	120	90	120
MEI-5042	.625"	50	Belt	Nema 42	88.7	120	90	120
MAI-3101	.500"	32	Screw	Nema 34	86.7	90	70	90
MAI-3234	.375"	32	Screw	Nema 34	86.7	90	70	90
MEI-3223	.250"	32	Belt	Nema 23	76.7	70	70	70
MAI-2523	.250"	25	Screw	Nema 23	51.4	70	42	70
MGM-3223	.500"	32	Belt	Nema 23	76.7	70	70	70
MGM-5034S	.750"	50	Screw	Nema 34	88.7	90	90	90
MGM-3223S	.500"	32	Screw	Nema 23	86.7	70	70	70
MES-3208	14mm	32	Belt	Metric 08	88.7	90	90	90

Dimensions are for reference purposes only

Nema mounts match IMS stepper motors or equivalent Metric mounts match Yaskawa SGM Servo motors or equivalent *Drilled & counterbored for 4-40 socket head cap screw from opposite side

MGM = Gearbox mount

Catalog 0950 **Dimensions**

OSP-E Series Electric Linear Drives and Guides **Motor Mounting Plate**

Motor Mount	Size	Туре	Motor Type	G	н	J	к
MES-2504	25	Belt	Metric 04	10-32 UNF	70	50	3.5
MES-3204	32	Belt	Metric 04	10-32 UNF	70	50	3.5
MES-5004	50	Belt	Metric 04	10-32 UNF	70	50	3.5
MES-5008	50	Belt	Metric 08	10-32 UNF	90	70	3.5
MEI-2523	25	Belt	Nema 23	10-32 UNF	66.68	38.1	2
MEI-3234	32	Belt	Nema 34	10-32 UNF	98.42	73.08	2
MEI-5034	50	Belt	Nema 34	10-32 UNF	98.42	73.08	2
MGM-3234	32	Belt	Nema 34	10-32 UNF	98.42	73.08	2
MGM-5034	50	Belt	Nema 34	10-32 UNF	98.42	73.08	2
MAS-2501	25	Screw	Metric 01	M4	46	30	3
MAS-3204	32	Screw	Metric 04	10-32 UNF	70	50	3.5
MAS-5004P	50	Screw	Metric 04P**	10-32 UNF	90	70	3.5
MAS-5008	50	Screw	Metric 08	10-32 UNF	90	70	3.5
MAI-2517	25	Screw	Nema 17	*	43.8	22	2.5
MAI-3223	32	Screw	Nema 23	10-32 UNF	66.68	38.1	2
MAI-5034	50	Screw	Nema 34	10-32 UNF	98.42	73.08	2
MAS-5008P	50	Screw	Metric 08P**	M8 X125	145	110	4
MEI-5042	50	Belt	Nema 42	.25-20 UNC	127	55.58	2
MAI-3101	32	Screw	Nema 34	10-32 UNF	98.42	73.08	2
MAI-3234	32	Screw	Nema 34	10-32 UNF	98.42	73.08	2
MEI-3223	32	Belt	Nema 23	10-32 UNF	66.68	38.1	2
MAI-2523	25	Screw	Nema 23	10-32 UNF	66.68	38.1	2
MGM-3223	32	Belt	Nema 23	10-32 UNF	66.68	38.1	2
MGM-5034S	50	Screw	Nema 34	10-32 UNF	98.42	73.08	2
MGM-3223S	32	Screw	Nema 23	10-32 UNF	66.68	38.1	2
MES-3208	32	Belt	Metric 08	10-32 UNF	90	70	3.5

Dimensions are for reference purposes only Nema mounts match IMS stepper motors or equivalent Metric mounts match Yaskawa SGM Servo motors or equivalent *Drilled & counterbored for 4-40 socket head cap screw from opposite side MGM = Gearbox mount

() ORIGA

1 2 3 4	5	6
series bore lead shaft	t mour	nt single mount mount double mount
E Electric 0 20 0 belt 0 2 25 1 1 1 H Heavy 3 32 2 5mm BS 2 Duty 5 50 3 3 3 Roller 4 10mm BS 4 Guide 5 6 2 7 7 7 R Heavy 8 8	right (belt) 0 left (belt) 1 double (belt) 2 BHD Integrated Gearbox 3:1** 4 BHD Integrated Gearbox 5:1** 5 BHD Integrated Gearbox 10:1 ** 6 7 8	if double (all and BHD)0if single (all and BHD)std mnt (nr20) (all and BHD)1std mnt (nr20) (all and BHD)floating mount (nr25) (all)2floating mount (nr25) (all)invert mount (nr30) (all)3invert mount (nr30) (all)invert float mount (nr35) (all)4invert float mount (nr35) (all)slideline (Ball Screw Only)5slideline (Ball Screw Only)powerslide ps25 (25)6ps25 (one mount, two carriages)(25)powerslide ps35 (25,32)7ps35 (one mount, two carriages)(25,32)powerslide ps44 (25,32)8ps44 (one mount, two carriages)(25,32)powerslide ps26 (con mount cont cont cont cont cont cont cont co
Duty 9 9 9 Ball A A A Guide B BP (belt Bi-parting) B (BHD-II) C C D D S Extending E E Rod F F Ball Screw G G (OSP-SBR) H H J J V Belt Rack K K Drive L L (OSP-BV) M M N N P P Q Q R R S S T T T	STD (screw) A 2 end (screw) B Clamp Shaft-Right (BHD, BV) D Clamp Shaft-Left (BHD, BV) E Clamp Shaft-Close (BHD) F Clamp Shaft-Open (BHD) G Plain Shaft-Right (BV) H Plain Shaft-Right (BV) J Hollow Shaft-Left (BHD, BV) K Hollow Shaft-Close (BHD) M Hollow Shaft-Close (BHD) M Hollow Shaft-Close (BHD) N Clamp Shaft-Right-IS (BHD, BV)* P Clamp Shaft-Close-IS (BHD, BV)* Q Clamp Shaft-Close-IS (BHD)* R Clamp Shaft-Open-IS (BHD)* T Obsolete (BHD) T	Proline/GDL (all) Proline/GDL (all) OSP-RV/ Reserved
V V W W X X Y Y Z special Z Drive Shaft Options (OSP-E) 0 = □ Stan	Obsolete (BHD) V Obsolete (BHD) W Double Plain Shaft-Right (BV) X Double Plain Shaft-Left (BV) Y special Z Drive Shaft Options adard	OSP-BV Size 20 V OSP-BV Size 25 W HD Heavy Duty Series Screw Y (25,32,50) Z special special Shaft Options Example:
	J Plain Shaft-Left (BV) H Plain Shaft-Right (BV)	Belt Tension Side
Actuating Direction Options - BHD Right D, K and P = Image: Close F, M and R =	Y Double Plain Shaft-Left X Double Plain Shaft-Right dard E Clamp Shaft-Left (BV) Q Clamp Shaft-Left (BV) Q Clamp Shaft-Left (BV) D Clamp Shaft-Right (BHI dard P Clamp Shaft-Right-IS (E	(BV) Hereine House
Open G, N and S =	L Hollow Shaft-Left (BHD, K Hollow Shaft-Right (BHI	BV) M

Catalog 0950 **Ordering Information**

OSP-E Series Electric Linear Drives and Guides OSP Series Electric Actuators

7*		8		9*		10 cente	r	11		12	13	14	15	16	17	18
motor mount		screws coatin	& g	suppo	rt	suppor qty	rt	switcl	ı	switch qty		stro	ke (r	nm)		
0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S T U V W X Y	none and Standard BHD mes-2504 (belt)(25) mes-3204 (belt)(32) mes-5008 (belt)(50) mei-2523 (belt)(25) mei-3234 (belt)(32) mei-3234 (belt)(32) mgm-5034 (belt)(32) mgm-5034 (belt)(50) mas-2501 (screw)(25) mas-3204(screw)(32) mas-5004P(screw)(50) mai-2517 (screw)(25) mai-3223 (screw)(20) mai-5034 (screw)(50) mai-3101 (screw)(50) mai-3101 (screw)(32) mai-3234 (screw)(50) mai-3234 (screw)(50) mai-3234 (screw)(25) mai-3234 (screw)(20) mai-3234 (screw)(20) mai-3234 (screw)(20) mai-3234 (screw)(20) mai-3233 (screw)(20) mai-3234 (screw)(20) mgm-32233 (screw)(20) mgm-32233 (screw)(20) mgm-3234 (screw)(20) mgm-3234 (screw)(20) mgm-3235 (screw)(20) mgm-3235 (screw)(20) mgm-3236 (belt)(32) Belt Gear 1:1 (Screw Only) Belt Gear 2:1 (Screw Only)	0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S T U V W X Y	std stainless hardware xylan coated aluminum stainless/xylan purge ports purge / stainless purge / stainless / xylan	0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S T U V W X Y	none and BHD D1 (all) E1 (all) E2 (all) E3 (all) E4 (all) A1+D1 (25,32) B1+D1 (25,32) C1+D1 (50) A1+E1 (25,32) C1+E1 (50) A2+E2 (25,32) C2+E2 (50) A3+E3 (25,32) C3+E3 (50) B4+E4 (25,32) C4+E4 (50)	0	none	0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S T U V W X Y	none no reed KL3045 (all) nc reed KL3048 (all) pnp KL3054+4041 (all) npn KL3060+4041 (all)	0		0	0	0	0	0
Z	special	Z	special	Z	special			Z	special		-					

7* (BHD) Non-standard KB and KL dimensions must be specified on a separate line item (use "Z" in part number).
7* (BHD) Order motor mount and/or gearbox as a separate line item (contact customer service).
7* Contact customer service if non-standard motor mounting holes are required.

9* (BHD) Order supports as a separate line item.
9* Only one end support is supplied in the OSP-E part number. If more than one is required, please order additional end supports as a separate line item.

0	0 = Standard Motor / Gearbox Placement	
	Motor Opposite Carriage	
Y	Y = Optional Motor/ Gearbox Placement Motor On Same Side As Carriage	

Electric Actuator Application Sheet

Distributor:	End-User:		
Salesperson:			
Phone:	Fax:		
Stroke: Time to make move:	Load: Incline:		
Check if load is externally supported			
Actuator type:			
	M = MS = MV = Description:		

See Attached for info /a additional info

Special Features Required:

□ Switches Type _____ Qty. ____

Controller Needed

Servo Motor Needed

Stepper Motor Needed

Customer Supplied Motor

Please complete and fax to: 630/871-1515, Attention: Technical Support (Can also be downloaded from website @ www.parkeroriga.com)

Safety Guide for Selecting and Using Hydraulic, Pneumatic Cylinders and Their Accessories

WARNING: \triangle FAILURE OF THE CYLINDER, ITS PARTS, ITS MOUNTING, ITS CONNECTIONS TO OTHER OBJECTS, OR ITS CONTROLS CAN RESULT IN:

- · Unanticipated or uncontrolled movement of the cylinder or objects connected to it.
- Falling of the cylinder or objects held up by it.
- Fluid escaping from the cylinder, potentially at high velocity.

THESE EVENTS COULD CAUSE DEATH OR PERSONAL INJURY BY, FOR EXAMPLE, PERSONS FALLING FROM HIGH LOCATIONS, BEING CRUSHED OR STRUCK BY HEAVY OR FAST MOVING OBJECTS, BEING PUSHED INTO DANGEROUS EQUIPMENT OR SITUATIONS, OR SLIPPING ON ESCAPED FLUID.

Before selecting or using Parker (The Company) cylinders or related accessories, it is important that you read, understand and follow the following safety information. Training is advised before selecting and using The Company's products.

1.0 General Instructions

1.1 Scope – This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) cylinder products. This safety guide is a supplement to and is to be used with the specific Company publications for the specific cylinder products that are being considered for use.

1.2 Fail Safe – Cylinder products can and do fail without warning for many reasons. All systems and equipment should be designed in a fail-safe mode so that if the failure of a cylinder product occurs people and property won't be endangered.

1.3 Distribution – Provide a free copy of this safety guide to each person responsible for selecting or using cylinder products. Do not select or use The Company's cylinders without thoroughly reading and understanding this safety guide as well as the specific Company publications for the products considered or selected.

1.4 User Responsibility – Due to very wide variety of cylinder applications and cylinder operating conditions, The Company does not warrant that any particular cylinder is suitable for any specific application. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The hydraulic and pneumatic cylinders outlined in this catalog are designed to The Company's design guidelines and do not necessarily meet the design guideline of other agencies such as American Bureau of Shipping, ASME Pressure Vessel Code etc. The user, through its own analysis and testing, is solely responsible for:

- · Making the final selection of the cylinders and related accessories.
- Determining if the cylinders are required to meet specific design requirements as required by the Agency(s) or industry standards covering the design of the user's equipment.
- Assuring that the user's requirements are met, OSHA requirements are met, and safety guidelines from the applicable agencies such as but not limited to ANSI are followed and that the use presents no health or safety hazards.
- Providing all appropriate health and safety warnings on the equipment on which the cylinders are used.

1.5 Additional Questions – Call the appropriate Company technical service department if you have any questions or require any additional information. See the Company publication for the product being considered or used, or call 1-800-CPARKER, or go to <u>www.parker.com</u>, for telephone numbers of the appropriate technical service department.

2.0 Cylinder and Accessories Selection

2.1 Seals – Part of the process of selecting a cylinder is the selection of seal compounds. Before making this selection, consult the "seal information page(s)" of the publication for the series of cylinders of interest.

The application of cylinders may allow fluids such as cutting fluids, wash down fluids etc. to come in contact with the external area of the cylinder. These fluids may attack the piston rod wiper and or the primary seal and must be taken into account when selecting and specifying seal compounds.

Dynamic seals will wear. The rate of wear will depend on many operating factors. Wear can be rapid if a cylinder is mis-aligned or if the cylinder has been improperly serviced. The user must take seal wear into consideration in the application of cylinders.

2.2 Piston Rods – Possible consequences of piston rod failure or separation of the piston rod from the piston include, but are not limited to are:

- Piston rod and or attached load thrown off at high speed.
- High velocity fluid discharge.
- Piston rod extending when pressure is applied in the piston retract mode.

Piston rods or machine members attached to the piston rod may move suddenly and without warning as a consequence of other conditions occurring to the machine such as, but not limited to:

- Unexpected detachment of the machine member from the piston rod.
- Failure of the pressurized fluid delivery system (hoses, fittings, valves, pumps, compressors) which maintain cylinder position.
- Catastrophic cylinder seal failure leading to sudden loss of pressurized fluid.
- · Failure of the machine control system.

Follow the recommendations of the "Piston Rod Selection Chart and Data" in the publication for the series of cylinders of interest. The suggested piston rod diameter in these charts must be followed in order to avoid piston rod buckling.

Piston rods are not normally designed to absorb bending moments or loads which are perpendicular to the axis of piston rod motion. These additional loads can cause the piston rod to fail. If these types of additional loads are expected to be imposed on the piston rod, their magnitude should be made known to our engineering department.

The cylinder user should always make sure that the piston rod is securely attached to the machine member.

On occasion cylinders are ordered with double rods (a piston rod extended from both ends of the cylinder). In some cases a stop is threaded on to one of the piston rods and used as an external stroke adjuster. On occasions spacers are attached to the machine member connected to the piston rod and also used as a stroke adjuster. In both cases the stops will create a pinch point and the user should consider appropriate use of guards. If these external stops are not perpendicular to the mating contact surface, or if debris is trapped between the contact surfaces, a bending moment will be placed on the piston rod, which can lead to piston rod failure. An external stop will also negate the effect of cushioning and will subject the piston rod in impact loading. Those two (2) conditions can cause piston rod failure. Internal stroke adjusters should be reviewed with our engineering department.

The piston rod to piston and the stud to piston rod threaded connections are secured with an anaerobic adhesive. The strength of the adhesive decreases with increasing temperature. Cylinders which can be exposed to temperatures above +250°F (+121°C) are to be ordered with a non studded piston rod and a pinned piston to rod joint.

2.3 Cushions – Cushions should be considered for cylinder applications when the piston velocity is expected to be over 4 inches/second. Cylinder cushions are normally designed to absorb the energy of a linear applied load. A rotating mass has considerably more energy than the same mass moving in a linear mode. Cushioning for a rotating mass application

2.4 Cylinder Mountings – Some cylinder mounting configurations may have certain limitations such as but not limited to minimum stroke for side or foot mounting cylinders or pressure de-ratings for certain mounts. Carefully review the catalog for these types of restrictions.

Always mount cylinders using the largest possible high tensile alloy steel socket head cap screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recommendations for their size.

2.5 Port Fittings – Hydraulic cylinders applied with meter out or deceleration circuits are subject to intensified pressure at piston rod end. The rod end pressure is approximately equal to:

operating pressure x effective cap end area

effective rod end piston area

Contact your connector supplier for the pressure rating of individual connectors.

3.0 Cylinder and Accessories Installation and Mounting

should be review by our engineering department.

3.1 Installation

3.1.1 – Cleanliness is an important consideration, and cylinders are shipped with the ports plugged to protect them from contaminants entering the ports. These plugs should not be removed until the piping is to be installed. Before making the connection to the cylinder ports, piping should be thoroughly cleaned to remove all chips or burrs which might have resulted from threading or flaring operations.

Catalog 0950 Safety Guide

3.1.2 – Cylinders operating in an environment where air drying materials are present such as fast-drying chemicals, paint, or weld splatter, or other hazardous conditions such as excessive heat, should have shields installed to prevent damage to the piston rod and piston rod seals.

3.1.3 – Proper alignment of the cylinder piston rod and its mating component on the machine should be checked in both the extended and retracted positions. Improper alignment will result in excessive rod gland and/or cylinder bore wear. On fixed mounting cylinders attaching the piston rod while the rod is retracted will help in achieving proper alignment.

3.1.4 – Sometimes it may be necessary to rotate the piston rod in order to thread the piston rod into the machine member. This operation must always be done with zero pressure being applied to either side of the piston. Failure to follow this procedure may result in loosening the piston to rod-threaded connection. In some rare cases the turning of the piston rod may rotate a threaded piston rod gland and loosen it from the cylinder head. Confirm that this condition is not occurring. If it does, retighten the piston rod gland firmly against the cylinder head.

For double rod cylinders it is also important that when attaching or detaching the piston rod from the machine member that the torque be applied to the piston rod end of the cylinder that is directly attaching to the machine member with the opposite end unrestrained. If the design of the machine is such that only the rod end of the cylinder opposite to where the rod attaches to the machine member can be rotated, consult the factory for further instructions.

3.2 Mounting Recommendations

3.2.1 – Always mount cylinders using the largest possible high tensile alloy steel socket head screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recommendations for their size.

3.2.2 – Side-Mounted Cylinders – In addition to the mounting bolts, cylinders of this type should be equipped with thrust keys or dowel pins located so as to resist the major load.

3.2.3 – Tie Rod Mounting – Cylinders with tie rod mountings are recommended for applications where mounting space is limited. The standard tie rod extension is shown as BB in dimension tables. Longer or shorter extensions can be supplied. Nuts used for this mounting style should be torqued to the same value as the tie rods for that bore size.

3.2.4 – Flange Mount Cylinders – The controlled diameter of the rod gland extension on head end flange mount cylinders can be used as a pilot to locate the cylinders in relation to the machine. After alignment has been obtained, the flanges may be drilled for pins or dowels to prevent shifting.

3.2.5 – Trunnion Mountings – Cylinders require lubricated bearing blocks with minimum bearing clearances. Bearing blocks should be carefully aligned and rigidly mounted so the trunnions will not be subjected to bending moments. The rod end should also be pivoted with the pivot pin in line and parallel to axis of the trunnion pins.

3.2.6 – Clevis Mountings – Cylinders should be pivoted at both ends with centerline of pins parallel to each other. After cylinder is mounted, be sure to check to assure that the cylinder is free to swing through its working arc without interference from other machine parts.

4.0 Cylinder and Accessories Maintenance, Troubleshooting and Replacement

4.1 Storage – At times cylinders are delivered before a customer is ready to install them and must be stored for a period of time. When storage is required the following procedures are recommended.

4.1.1 – Store the cylinders in an indoor area which has a dry, clean and noncorrosive atmosphere. Take care to protect the cylinder from both internal corrosion and external damage.

4.1.2 – Whenever possible cylinders should be stored in a vertical position (piston rod up). This will minimize corrosion due to possible condensation which could occur inside the cylinder. This will also minimize seal damage.

 $\ensuremath{\textbf{4.1.3}}$ – Port protector plugs should be left in the cylinder until the time of installation.

4.1.4 – If a cylinder is stored full of hydraulic fluid, expansion of the fluid due to temperature changes must be considered. Installing a check valve with free flow out of the cylinder is one method.

4.1.5 – When cylinders are mounted on equipment that is stored outside for extended periods, exposed unpainted surfaces, e.g. piston rod, must be coated with a rust-inhibiting compound to prevent corrosion.

4.2 Cylinder Trouble Shooting

4.2.1 – External Leakage

4.2.1.1 – Rod seal leakage can generally be traced to worn or damaged seals. Examine the piston rod for dents, gouges or score marks, and replace piston rod if surface is rough.

Rod seal leakage could also be traced to gland wear. If clearance is excessive, replace rod bushing and seal. Rod seal leakage can also be traced to seal deterioration. If seals are soft or gummy or brittle, check compatibility of seal material with lubricant used if air cylinder, or operating fluid if hydraulic cylinder. Replace with seal material, which is compatible with these fluids. If the seals are hard or have lost elasticity, it is usually due to exposure to temperatures in excess of 165°F. (+74°C). Shield the cylinder from the heat source to limit temperature to 350°F. (+177°C.) and replace with fluorocarbon seals.

4.2.1.2 – Cylinder body seal leak can generally be traced to loose tie rods. Torque the tie rods to manufacturer's recommendation for that bore size.

Excessive pressure can also result in cylinder body seal leak. Determine maximum pressure to rated limits. Replace seals and retorque tie rods as in paragraph above. Excessive pressure can also result in cylinder body seal leak. Determine if the pressure rating of the cylinder has been exceeded. If so, bring the operating pressure down to the rating of the cylinder and have the tie rods replaced.

Pinched or extruded cylinder body seal will also result in a leak. Replace cylinder body seal and retorque as in paragraph above.

Cylinder body seal leakage due to loss of radial squeeze which shows up in the form of flat spots or due to wear on the O.D. or I.D. – Either of these are symptoms of normal wear due to high cycle rate or length of service. Replace seals as per paragraph above.

4.2.2 – Internal Leakage

4.2.2.1 – Piston seal leak (by-pass) 1 to 3 cubic inches per minute leakage is considered normal for piston ring construction. Virtually no static leak with lipseal type seals on piston should be expected. Piston seal wear is a usual cause of piston seal leakage. Replace seals as required.

4.2.2.2 – With lipseal type piston seals excessive back pressure due to over-adjustment of speed control valves could be a direct cause of rapid seal wear. Contamination in a hydraulic system can result in a scored cylinder bore, resulting in rapid seal wear. In either case, replace piston seals as required.

4.2.2.3 – What appears to be piston seal leak, evidenced by the fact that the cylinder drifts, is not always traceable to the piston. To make sure, it is suggested that one side of the cylinder piston be pressurized and the fluid line at the opposite port be disconnected. Observe leakage. If none is evident, seek the cause of cylinder drift in other component parts in the circuit.

4.2.3 - Cylinder Fails to Move the Load

 $\label{eq:2.3.1} \textbf{-} Pneumatic or hydraulic pressure is too low. Check the pressure at the cylinder to make sure it is to circuit requirements.$

4.2.3.2 – Piston Seal Leak – Operate the valve to cycle the cylinder and observe fluid flow at valve exhaust ports at end of cylinder stroke. Replace piston seals if flow is excessive.

4.2.3.3-Cylinder is undersized for the load – Replace cylinder with one of a larger bore size.

4.3 Erratic or Chatter Operation

4.3.1 – Excessive friction at rod gland or piston bearing due to load misalignment – Correct cylinder-to-load alignment.

 $\label{eq:alpha} \textbf{4.3.2} - \text{Cylinder sized too close to load requirements} - \text{Reduce load or install larger cylinder.}$

4.3.3 – Erratic operation could be traced to the difference between static and kinetic friction. Install speed control valves to provide a back pressure to control the stroke.

4.4 Cylinder Modifications, Repairs, or Failed Component – Cylinders as shipped from the factory are not to be disassembled and or modified. If cylinders require modifications, these modifications must be done at company locations or by The Company's certified facilities. The Cylinder Division Engineering Department must be notified in the event of a mechanical fracture or permanent deformation of any cylinder component (excluding seals). This includes a broken piston rod, tie rod, mounting accessory or any other cylinder component. The notification should include all operation and application details. This information will be used to provide an engineered repair that will prevent recurrence of the failure.

It is allowed to disassemble cylinders for the purpose of replacing seals or seal assemblies. However, this work must be done by strictly following all the instructions provided with the seal kits.

Offer of Sale

The items described in this document and other documents or descriptions provided by Parker Hannifin Corporation, its subsidiaries and Divisions ("Company") and its authorized distributors, are hereby offered for sale at prices to be established by the Company, its subsidiaries and its authorized distributors. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any such item, when communicated to the Company, its subsidiary or an authorized distributor ("Seller") verbally or in writing, shall constitute acceptance of this offer.

1. Terms and Conditions of Sale: All descriptions, quotations, proposals, offers, acknowledgments, acceptances and sales of Seller's products are subject to and shall be governed exclusively by the terms and conditions stated herein. Buyer's acceptance of any offer to sell is limited to these terms and conditions. Any terms or conditions in addition to, or inconsistent with those stated herein, proposed by Buyer in any acceptance of an offer by Seller, are hereby objected to. No such additional, different or inconsistent terms and conditions shall become part of the contract between Buyer and Seller unless expressly accepted in writing by Seller. Seller's acceptance of any offer to purchase by Buyer is expressly conditional upon Buyer's assent to all the terms and conditions stated herein, including any terms in addition to, or inconsistent with those contained in Buyer's for. Acceptance of Seller's products shall in all events constitute such assent.

2. Payment: Payment shall be made by Buyer net 30 days from the date of delivery of the items purchased hereunder. Amounts not timely paid shall bear interest at the maximum rate permitted by law for each month or portion thereof that the Buyer is late in making payment. Any claims by Buyer for omissions or shortages in a shipment shall be waived unless Seller receives notice thereof within 30 days after Buyer's receipt of the shipment.

3. Delivery: Unless otherwise provided on the face hereof, delivery shall be made F.O.B. Seller's plant. Regardless of the method of delivery, however, risk of loss shall pass to Buyer upon Seller's delivery to a carrier. Any delivery dates shown are approximate only and Seller shall have no liability for any delays in delivery.

4. Warranty: Seller warrants that the items sold hereunder shall be free from defects in material or workmanship for a period of 18 months from date of shipment from the Company. THIS WARRANTY COMPRISES THE SOLE AND ENTIRE WARRANTY PERTAINING TO ITEMS PROVIDED HEREUNDER. SELLER MAKES NO OTHER WARRANTY, GUARANTEE, OR REPRESENTATION OF ANY KIND WHATSOEVER. ALL OTHER WARRANTIES, INCLUDING BUT NOT LIMITED TO, MERCHANTABILITY AND FITNESS FOR PURPOSE, WHETHER EXPRESS, IMPLIED, OR ARISING BY OPERATION OF LAW, TRADE USAGE, OR COURSE OF DEALING ARE HEREBY DISCLAIMED.

NOTWITHSTANDINGTHE FOREGOING, THERE ARE NOWARRANTIES WHATSOEVER ON ITEMS BUILT OR ACQUIRED WHOLLY OR PARTIALLY, TO BUYER'S DESIGN OR SPECIFICATIONS.

5. Limitation of Remedy: SELLER'S LIABILITY ARISING FROM OR IN ANY WAY CONNECTED WITH THE ITEMS SOLD OR THIS CONTRACT SHALL BE LIMITED EXCLUSIVELY TO REPAIR OR REPLACEMENT OF THE ITEMS SOLD OR REFUND OF THE PURCHASE PRICE PAID BY BUYER, AT SELLER'S SOLE OPTION. IN NO EVENT SHALL SELLER BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS ARISING FROM OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR ITEMS SOLD HEREUNDER, WHETHER ALLEGED TO ARISE FROM BREACH OF CONTRACT, EXPRESS OR IMPLIED WARRANTY, OR IN TORT, INCLUDING WITHOUT LIMITATION, NEGLIGENCE, FAILURETO WARN OR STRICT LIABILITY.

6. Changes, Reschedules and Cancellations: Buyer may request to modify the designs or specifications for the items sold hereunder as well as the quantities and delivery dates thereof, or may request to cancel all or part of this order, however, no such requested modification or cancellation shall become part of the contract between Buyer and Seller unless accepted by Seller in a written amendment to this Agreement. Acceptance of any such requested modification or cancellation shall be at Seller's discretion, and shall be upon such terms and conditions as Seller may require.

7. Special Tooling: A tooling charge may be imposed for any special tooling, including without limitations, dies, fixtures, molds and patterns, acquired to manufacture items sold pursuant to this contract. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the items sold hereunder, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter,

discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.

8. Buyer's Property: Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer, or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two (2) consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.

9. Taxes: Unless otherwise indicated on the face hereof, all prices and charges are exclusive of excise, sales, use, property, occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of the items sold hereunder. If any such taxes must be paid by Seller or if Seller is liable for the collection of such tax, the amount thereof shall be in addition to the amounts for the items sold. Buyer agrees to pay all such taxes or to reimburse Seller therefore upon receipt of its invoice. If Buyer claims exemption from any sales, use or other tax imposed by any taxing authority, Buyer shall save Seller harmless from and against any such tax, together with any interest or penalties thereon which may be assessed if the items are held to be taxable.

10. Indemnity For Infringement of Intellectual Property Rights: Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Part 10. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets (hereinafter "Intellectual Property Rights"). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on an allegation that an item sold pursuant to this contract infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If an item sold hereunder is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and option, procure for Buyer the right to continue using said item, replace or modify said item so as to make it noninfringing, or offer to accept return of said item and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to items delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any item sold hereunder. The foregoing provisions of this Part 10 shall constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights.

If a claim is based on information provided by Buyer or if the design for an item delivered hereunder is specified in whole or in part by Buyer, Buyer shall defend and indemnify Seller for all costs, expenses or judgements resulting from any claim that such item infringes any patent, trademark, copyright, trade dress, trade secret or any similar right.

11. Force Majeure: Seller does not assume the risk of and shall not be liable for delay or failure to perform any of Seller's obligations by reason of circumstances beyond the reasonable control of Seller (hereinafter "Events of Force Majeure"). Events of Force Majeure shall include without limitation, accidents, acts of God, strikes or labor disputes, acts, laws, rules or regulations of any government or government agency, fires, floods, delays or failures in delivery of carriers or suppliers, shortages of materials and any other cause beyond Seller's control.

12. Entire Agreement/Governing Law: The terms and conditions set forth herein, together with any amendments, modifications and any different terms or conditions expressly accepted by Seller in writing, shall constitute the entire Agreement concerning the items sold, and there are no oral or other representations or agreements which pertain thereto. This Agreement shall be governed in all respects by the law of the State of Ohio. No actions arising out of sale of the items sold hereunder or this Agreement may be brought by either party more than two (2) years after the cause of action accrues.

() ORIGA

Printed in U.S.A. December, 2008
Catalog 0950 12/2008

Parker Hannifin Corporation Parker-Origa 100 West Lake Drive

Phone 630-871-8300 fax 630-871-1515 toll free 800-695-5984 Glendale Heights, IL 60139 USA email: info-hous-market@parker.com website www.parkeroriga.com