
May 2015 DocID027745 Rev 1 1/31

31

AN4683
Application note

Transport layer security protocol for SPWFxxx module

Introduction
The purpose of this document is to present a demonstration package for creating a secure
connection over TCP/IP between the Wi-Fi module SPWF01Sxxx (see [1] in
References)and a remote server exposing secured service.

Security is provided by the secure sockets layer (SSL) and transport layer security (TLS)
protocols. The SSL/TLS protocols provide security for communication over networks, such
as the Internet, and allow client and server applications to communicate in a way that is
confidential and secure.

The document includes a brief introduction to SSL/TLS principles, a description of the
demonstration package organization and a tutorial with client-server connection examples.

www.st.com

http://www.st.com

Contents AN4683

2/31 DocID027745 Rev 1

Contents

1 SSL/TLS protocol overview 4

1.1 SSL/TLS sub-protocols . 5

1.1.1 Handshake protocol . 5

1.1.2 Change cipher spec protocol . 7

1.1.3 Alert protocol . 7

1.1.4 Record protocol . 7

1.2 Authentication and certificates . 7

2 SPWF01Sxxx use modes . 11

2.1 TLS protocol .11

2.2 Supported ciphers list .11

2.3 Domain name check for server certificate . 12

2.4 Authentication . 12

2.4.1 Anonymous negotiation . 12

2.4.2 One-way authentication . 13

2.4.3 Mutual authentication . 14

2.5 Protocol version downgrade . 16

2.6 Pseudo random number generator . 16

3 Demonstration package 17

3.1 Package directories . 17

3.2 Wi-Fi module setup . 18

3.3 Example 1: TLS Client with mutual authentication 18

3.4 Example 2: TLS Client with one-way authentication 20

3.5 Example 3: Gmail SMTP server access with anonymous negotiation . . . 22

3.6 Example 4: Xively example with anonymous negotiation 22

3.7 Example 5: connect to HTTPS my.st.com . 22

4 Known limitations and revisions . 25

5 Glossary . . 26

6 References . . 27

DocID027745 Rev 1 3/31

AN4683 Contents

31

Appendix A Certificate generation with OpenSSL. 28

7 Revision history . 30

SSL/TLS protocol overview AN4683

4/31 DocID027745 Rev 1

1 SSL/TLS protocol overview

Originally developed by Netscape in the mid 1990s, the secure sockets layer (SSL) is a
cryptographic protocol designed to provide communication security over the Internet (see
[3] in References). Version 1.0 never publicly released, while version 2.0 was released in
February of 1995 but “contained a number of security flaws which ultimately led to the
design of SSL version 3.0” (see [4] in References). SSLv3.0 was a complete redesign of the
protocol and is still widely supported (since 1996).

The IETF standards body adopted SSLv3.0 with minor tweaks and published it as TLS
version 1.0 (RFC 2246, 1999). The two versions are very similar, but interoperability is
precluded. TLSv1.2 (RFC 5246, 2008) is the latest and recommended version, which is
superior because it offers flexibility and key features that were unavailable in earlier protocol
versions.

All TLS versions were further refined (RFC 6176, 2011) removing their backward
compatibility with SSL such that TLS sessions will never negotiate the use of SSLv2.0.

As shown in Figure 1, SSL/TLS is typically applied in TCP/IP protocol stacks and provides
security services on top of the transport layer. The protocol is composed of two layers: the
TLS record layer and the TLS handshake layer.

At the lowest level, layered on top of a reliable transport protocol is the TLS record protocol.
The record protocol is used for encapsulation of various higher-level protocols and provides
two basic properties:

• Confidentiality

• Integrity

Figure 1. SSL/TLS protocol architecture

The TLS Handshake layer consists of three sub-protocols: Handshake, Change cipher
spec, and Alert.

The Handshake protocol is the most complex part of TLS and provides a number of very
important security functions. It allows the server and client to authenticate each other and to
negotiate an encryption algorithm and cryptographic keys before the application protocol
transmits or receives its first byte of data. The TLS handshake protocol provides connection
security that has three basic properties:

• Cipher suite negotiation

• Authentication of the server and, optionally, of the client

• Session key information exchange

An outline of the sub-protocols is provided in the next section.

DocID027745 Rev 1 5/31

AN4683 SSL/TLS protocol overview

31

1.1 SSL/TLS sub-protocols
The TLS record layer and TLS handshake layer consists of four sub-protocols overall:
handshake protocol, change cipher spec protocol, alert protocol, and record protocol.

1.1.1 Handshake protocol

This sub-protocol is used to negotiate session information between the client and the server.
The session information consists of a session ID, peer certificate(s), the cipher suite, the
compression algorithm, and a shared secret that is used to generate the session key.

Figure 2 depicts the message flow for a full handshake process (see [5] in References). The
optional value indicates optional or situation-dependent messages, i.e. in the case of mutual
authentication a TLS server must send its certificate and request a certificate from the client,
while in the case of anonymous negotiation the optional messages may be skipped. The
certificate-based authentication is examined more in detail in Section 1.2.

Figure 2. SSL/TLS full handshake procedure

1. The client sends a ClientHello message specifying the highest SSL/TLS protocol
version (SSLv3.0, TLSv1.0, 1.1 or 1.2) it supports, a random number, a list of
suggested cipher suites and compression methods.

2. The server responds with a ServerHello message, containing the chosen protocol
version, another random number, cipher suite and compression method from the
choices offered by the client, and the session ID.

Note: The chosen protocol version should be the highest that both client and server support.

SSL/TLS protocol overview AN4683

6/31 DocID027745 Rev 1

Note: The client and the server must support at least one common cipher suite, otherwise the
handshake protocol fails. The server generally chooses the strongest common cipher suite
they both support.

3. The server sends its digital certificate in an optional certificate message. For example,
the server uses X.509 digital certificates.

4. Additionally, a ServerKeyExchange message may be sent, if it is required (e.g., if the
server has no certificate, or if its certificate is for signing only).

5. If the server requires a digital certificate for client authentication, an optional
CertificateRequest message is appended.

6. The server sends a ServerHelloDone message indicating the end of this phase of
negotiation.

7. If the server has sent a CertificateRequest message, the client must send the
Certificate message. For example the client uses an X.509 digital certificate.

8. The client sends a ClientKeyExchange message. This message contains the
premaster secret used in the generation of the symmetric encryption keys and the
message authentication code (MAC) keys. The client encrypts the pre-master secret
with the public key of the server.

Note: The public key is sent by the server in the digital certificate or in ServerKeyExchange
message.

9. If the client sent a digital certificate to the server, the client sends a CertificateVerify
message signed with the client's private key. By verifying the signature of this
message, the server can explicitly verify the ownership of the client digital certificate.

10. The client sends a ChangeCipherSpec message announcing that the new parameters
(cipher method, keys) have been loaded.

11. The client sends a finished message. It is the first message encrypted with the new
cipher method and keys.

12. The server responds with a ChangeCipherSpec and a finished message from its end.

13. The SSL handshake protocol ends and the encrypted exchange of application data can
be started.

During the initial handshaking phase, the client and server negotiate cipher suites, which
specify a cipher for each of the following functionalities:

A complete list of SSL/TLS cipher suites can be found in the registry maintained by the
Internet assigned numbers authority (IANA) (see [6] in References).

Table 1. Ciphers

Functionality Cipher

Authentication RSA, DSA, ECDSA

Key-exchange/agreement RSA, DH, ECDH, SRP, PSK

Symmetric ciphers for encryption RC4, IDEA, DES, 3DES, AES or Camellia.

Hash
MAC (for SSLv3.0) or HMAC with MD2, MD4, MD5, SHA-1,
SHA-256 (after TLSv1.1 and 1.2 standards).

DocID027745 Rev 1 7/31

AN4683 SSL/TLS protocol overview

31

1.1.2 Change cipher spec protocol

The change cipher spec protocol is used to change the keying material used for encryption
between the client and server. Keying material is raw data that is used to create keys for
cryptographic use. The change cipher spec protocol consists of a single message to tell the
other party in the SSL/TLS session that the sender wants to change to a new set of keys.
The key is computed from the information exchanged by the handshake protocol.

1.1.3 Alert protocol

Alert messages are used to indicate a change in status or an error condition to the peer.
There are a wide variety of alerts to notify the peer of both normal and error conditions.
Alerts are commonly sent when the connection is closed, an invalid message is received, a
message cannot be decrypted, or the user cancels the operation.

1.1.4 Record protocol

The record protocol receives and encrypts data from the higher-layer and delivers it to the
transport layer. As shown in Figure 3, the record protocol takes the data, fragments it into
TLSPlaintext blocks with a size appropriate to the cryptographic algorithm. Then it optionally
compresses (or, for data received, decompresses) the TLSPlaintext, applies a MAC or
HMAC (HMAC is supported only by TLS) to get the hash tag. Finally the TLSCompressed
data and hash tag (and some padding eventually) are concatenated and encrypted (or
decrypted) using the information negotiated during the handshake protocol.

Encryption and hash ensure, respectively, the confidentiality and the integrity of the
plaintext.

Figure 3. Record protocol operations

1.2 Authentication and certificates
SSL/TLS requires a server certificate and, optionally, a client certificate. The digital
certificate certifies the ownership of a public key by the named subject of the certificate, also
known as public key certificates. This allows others parties to rely upon signatures or
assertions made by the private key that corresponds to the public key that is certified.

Digital certificates used in SSL/TLS comply with the X.509 standard (see [8] in References),
which specifies the information required and the formats for public key certificates. In an

SSL/TLS protocol overview AN4683

8/31 DocID027745 Rev 1

X.509 system, the subject of the certificate is identified by a distinguished name (DN). A DN
is a series of name-value pairs that uniquely identify an entity. The following attribute types
are commonly found in the DN:

The X.509 standard provides for a DN to be specified in a string format. For example:

CN=John, O=STM, OU=Test, C=IT

The common name (CN) can describe an individual user or any other entity, for example a
web server. DNs may include a variety of other name-value pairs. The rules governing the
construction of DNs can be complex. For comprehensive information about DNs (see [8] in
References).

In this model of trust relationships, a certification authority (CA) is an independent and
trusted third party that issues digital certificates to provide assurance that the public key of
an entity truly belongs to that entity. The roles of a CA are:

– On receiving a request for a digital certificate, to verify the identity of the requester
before building, signing and returning the personal certificate

– To provide the CA’s own public key in its CA certificate

– To publish lists of certificates that are no longer trusted in a certificate revocation
List (CRL).

An X.509 certificate issued by the CA binds a particular public key to the name of the DN the
certificate identifies. Only the public key certified by the certificate will work with the
corresponding private key possessed by the DN identified by the certificate.

CN Common name

T Title

O Organization name

OU Organization unit name

L Locality name

ST (or SP or S) State or province name

C Country

DocID027745 Rev 1 9/31

AN4683 SSL/TLS protocol overview

31

The contents of a certificate, according to the X.509 version 3 specifications, may include:

– The version number of the X.509 standard supported by the certificate.

– The certificate’s serial number. Every certificate issued by a CA has a serial
number that is unique among the certificates issued by that CA.

– Information about the user’s public key, including the algorithm used and a
representation of the key itself.

– The DN of the CA that issued the certificate.

– The period during which the certificate is valid.

– The DN of the certificate subject, which is also called the subject name. For
example, in an SSL client certificate, this is the user’s DN.

– Optional certificate extensions, which may provide additional data used by the
client or server.

– The cryptographic algorithm, or cipher, used by the issuing CA to create its own
digital signature.

– The CA’s digital signature, obtained by hashing all of the data in the certificate
together and encrypting it with the CA’s private key.

The certificate text format begins with the following line:

-----BEGIN CERTIFICATE-----

followed by certificate data, which should be base-64 encoded, as described by RFC 1113.
The certificate information must end with this last line:

-----END CERTIFICATE-----

When you receive the certificate from another entity, you may need to use a certificate
chain, also known as the certification path, which is a list of certificates used to authenticate
an entity. The chain, or path, begins with the certificate of that entity, and each certificate in
the chain is signed by the entity identified by the next certificate in the chain. The chain
terminates with a root CA certificate. The root CA certificate is always signed by the CA
itself; it must be considered as a trusted CA and must be available in the application (e.g.
SSL/TLS client, web browser). The signatures of all certificates in the chain must be verified
until the root CA certificate is reached. Figure 4 illustrates a certification path from the
certificate owner to the root CA, where the chain of trust begins. Notice that different chains
can have multiple or even none intermediate CAs.

SSL/TLS protocol overview AN4683

10/31 DocID027745 Rev 1

Figure 4. Certificate chain or chain of trust

In some cases it would be easier and less expensive to use self-signed certificates, for
example, for testing purposes or when the parties know and trust each other. A self-signed
certificate is a certificate that is signed by the same entity whose identity it certifies. There is
no central CA.

TLS supports three authentication modes:

– Mutual authentication - both parties (client and server) share their signed
certificates and authenticate each other. Mutual authentication provides stronger
security by assuring that the identity on both sides of the communication are
known.

– One-way authentication - only the server sends its signed certificate and is
authenticated by the client. The client is not required to send the server a digital
certificate and remains unauthenticated (no certificate).

– Anonymous - neither entity authenticates the identity of the other party.

Each party is responsible for verifying that the other’s certificate is valid and has not expired
or been revoked. In case of one-way or mutual authentication, because certificate validation
requires that root CA keys be distributed independently, it is assumed the remote end must
already possess a root CA certificate to accomplish validation.

DocID027745 Rev 1 11/31

AN4683 SPWF01Sxxx use modes

31

2 SPWF01Sxxx use modes

The demonstrator allows secure TCP/IP connection to be created between the Wi-Fi
module SPWF01Sxxx (see [1] in References) and a remote server exposing secured
service. The SPWF01Sxxx module includes a lightweight SSL/TLS stack and a
cryptographic library targeted for embedded applications. The following sections illustrate
the main security features supported.

2.1 TLS protocol
The SPWF01Sxxx module integrates a lightweight SSL/TLS stack and a cryptographic
library. To meet device memory constraints, the demonstrator enables just a subset of
cryptographic algorithms with respect to Table 1. The SPWF01Sxxx implements a SSL/TLS
client with the features listed below:

– SSLv3.0 and TLSv1.0, 1.1 and 1.2, with automatic downgrade of protocol version

– Server and client authentication

– Multiple hashing functions: MD5, SHA-1, SHA-256

– Block, stream, and authenticated ciphers: AES (128 and 256, CBC), 3DES, ARC4

– Public key algorithms: RSA (1024, 2048), ECDSA

– Key exchange: ECDH, ECDHE

– ECC support: EC curves over 192, 224, 384, 256, 521 bit prime field

– X.509 certificate support, PEM format

2.2 Supported ciphers list

Table 2. Demonstrator cipher suites

Cipher suites
2 byte codes
(hex format)

Version

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC0,0x27 TLS1.2

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC0,0x23 TLS1.2

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 0xC0,0x29 TLS1.2

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 0xC0,0x25 TLS1.2

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC0,0x0A TLS1.0/1.1/1.2

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0xC0,0x05 TLS1.0/1.1/1.2

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC0,0x09 TLS1.0/1.1/1.2

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 0xC0,0x04 TLS1.0/1.1/1.2

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA 0xC0,0x07 TLS1.0/1.1/1.2

TLS_ECDH_ECDSA_WITH_RC4_128_SHA 0xC0,0x02 TLS1.0/1.1/1.2

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA 0xC0,0x08 TLS1.0/1.1/1.2

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA 0xC0,0x03 TLS1.0/1.1/1.2

SPWF01Sxxx use modes AN4683

12/31 DocID027745 Rev 1

2.3 Domain name check for server certificate
When making a TLS connection, the client requests a digital certificate from the server.
Once the server sends the certificate, the client examines it and compares the domain it
was trying to connect to with the name (common name or others) included in the certificate.
If a match is found, the connection proceeds as normal. If a match is not found, the user
may be warned of the discrepancy and the connection may be aborted as the mismatch
may indicate an attempted man-in-the-middle attack.

The demonstrator allows the user to bypass the warning to proceed with the connection,
with the user taking on the responsibility of trusting the certificate and the connection.

2.4 Authentication
As mentioned in Section 1, SSL/TLS requires a server certificate and, optionally, a client
certificate to be exchanged during handshake. Depending on the required level of trust, we
can have three authentication modes: anonymous, one-way and mutual authentication. The
following three sub-sections describe how to configure the SPWF01Sxxx module to enable
the three different modes.

2.4.1 Anonymous negotiation

In case of anonymous TLS connection, the user assumes to be in a trusted environment,
thus party authentication is not required. Even if server sends a certificate, the client will skip
the verification of authenticity.

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC0,0x14 TLS1.0/1.1/1.2

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 0xC0,0x0F TLS1.0/1.1/1.2

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC0,0x13 TLS1.0/1.1/1.2

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 0xC0,0x0E TLS1.0/1.1/1.2

TLS_ECDHE_RSA_WITH_RC4_128_SHA 0xC0,0x11 TLS1.0/1.1/1.2

TLS_ECDH_RSA_WITH_RC4_128_SHA 0xC0,0x0C TLS1.0/1.1/1.2

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0xC0,0x12 TLS1.0/1.1/1.2

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA 0xC0,0x0D TLS1.0/1.1/1.2

TLS_RSA_WITH_AES_256_CBC_SHA256 0x00,0x3D TLS1.2

TLS_RSA_WITH_AES_128_CBC_SHA256 0x00,0x3C TLS1.2

TLS_RSA_WITH_AES_256_CBC_SHA 0x00,0x35 TLS1.0/1.1/1.2

TLS_RSA_WITH_AES_128_CBC_SHA 0x00,0x2F TLS1.0/1.1/1.2

SSL_RSA_WITH_RC4_128_SHA 0x00,0x05 SSL3.0/TLS1.0/1.1/1.2

SSL_RSA_WITH_RC4_128_MD5 0x00,0x04 SSL3.0/TLS1.0/1.1/1.2

SSL_RSA_WITH_3DES_EDE_CBC_SHA 0x00,0x0A SSL3.0/TLS1.0/1.1/1.2

Table 2. Demonstrator cipher suites (continued)

Cipher suites
2 byte codes
(hex format)

Version

DocID027745 Rev 1 13/31

AN4683 SPWF01Sxxx use modes

31

Note: This mode is particularly attractive for privacy-preserving solutions and also for low memory
consumption, since it does not require certificates storage. But it increases the chance for
intruder-in-the-middle attacks.

Figure 5 lists the AT required commands for opening a secure connection with anonymous
negotiation, followed by writing to and reading sockets.

Figure 5. AT commands for anonymous negotiation

2.4.2 One-way authentication

In one-way authentication mode, the server sends its signed certificate to an
unauthenticated client.

In order to verify the server certificate, the client:

1. verifies the digital signature

2. checks that the date of the certificate is in range

3. verifies the domain

To achieve this purpose, the following steps must be completed:

1. the issuing root CA certificate must be loaded in advance into client (see
AT+S.TLSCERT) in PEM format.

2. To check the date, the module reference time must be initialized after each module
reset (see AT+S.SETTIME): the time refers to UTC format and must be expressed as
the time in seconds since 1970-Jan-01.

3. The domain passed to the client (see AT+S.TLSDOMAIN) must match the name
specified in the server certificate (Common Name or others).

If the verification of the server certificate succeeds, the connection proceeds as normal.

SPWF01Sxxx use modes AN4683

14/31 DocID027745 Rev 1

If verification fails (either for signature verification error, time or domain mismatch), then the
client throws a warning message “ERROR: SSL/TLS unable to connect” and the connection
is closed. As such, to solve this connection error, users either need to turn off verification of
the server (i.e switch to anonymous mode; see Section 2.4.1), or load the correct CA
certificate.

Note: The one-way authentication works with any cipher reported in Table 2, including all ECC
ciphers up to 521 key length, RSA-1024 and RSA-2048.

Note: The maximum allowed size for files uploaded to module is approximately 1.3 KB.

After the client is configured as in Figure 6, the host can open a secure socket.

Figure 6. AT commands for one-way authentication

2.4.3 Mutual authentication

In mutual authentication mode, both parties (client and server) share their signed
certificates.

In order to verify server certificate, the client:

1. verifies the digital signature

2. checks that the date of the certificate is in range

3. verifies the domain

Additionally, for client authentication, the client also:

4. sends its certificate to the server. Be aware that, in order to verify the client certificate,
the server should have access to the issuing CA certificate (public or private).

To achieve this purpose, the following steps must be completed:

DocID027745 Rev 1 15/31

AN4683 SPWF01Sxxx use modes

31

1. The issuing Root CA certificate must be loaded in advance into client (see
AT+S.TLSCERT) in PEM format.

2. To check the date, the module reference time must be initialized after each module
reset (see AT+S.SETTIME): the time refers to UTC format and must be expressed as
the time in seconds since 1970-Jan-01.

3. The domain passed to the client (see AT+S.TLSDOMAIN) must match the name
specified in the server certificate (Common Name or others).

4. The certificate and private key of the client must be loaded in advance into client (see
AT+S.TLSCERT) in PEM format.

The server is in charge of client authentication. If the client authentication fails, it's up to the
server to either keep or close the connection:

• Option 1: If client authentication succeeds, the handshake is completed and the
connection proceeds as normal.

• Option 2: if the client authentication fails but the server neglects it, then the handshake
is completed and the connection proceeds as normal.

• Option 3: if the client authentication fails and this blocks the server, then the handshake
is interrupted, the connection is reset by the server and the client generates a warning
message “ERROR: SSL/TLS unable to connect” (the connection is closed).

As such, to solve connection errors, users either need to change authentication mode, i.e.
switch to anonymous mode (Section 2.4.1) or one-way mode (Section 2.4.2), or load the
correct certificates and key.

Note: The mutual mode is clearly more resource demanding than previous ones. Due to memory
limitations, the adoption of mutual authentication is limited to specific authentication ciphers:
it is recommended to use ECC ciphers up to 521 key length, while RSA-1024 and RSA-
2048 should be avoided as it could exceed memory resources.

The maximum allowed size for files uploaded to the module (CA certificate, domain name,
client certificate and client key) is approximately 3 KB overall.

After the client is configured as in Figure 7, the host can open a secure socket.

SPWF01Sxxx use modes AN4683

16/31 DocID027745 Rev 1

Figure 7. AT commands for mutual authentication

2.5 Protocol version downgrade
The client is able to connect to a server running SSLv3.0 to TLSv1.2 protocol version.
Thanks to the version downgrade capability, the client can use the highest protocol version
supported by the server and eventually downgrade to SSLv3.0 if needed.

2.6 Pseudo random number generator
The SPWF01Sxxx module provides a software-based pseudo random number generator
(PRNG). The PRNG is initialized at boot time and is based on the RC4 stream cipher
algorithm.

DocID027745 Rev 1 17/31

AN4683 Demonstration package

31

3 Demonstration package

The functions of the demonstration package are summarized in Table 3.

3.1 Package directories
The demonstration package is contained in the project folder and is organized as described
below:

• Project/firmware: this folder contains the firmware binary

Table 3. Demonstration package functions

SSL/TLS Client
Available versions: SSLv3.0 and TLSv1.0, 1.1 and 1.2. Automatic
downgrade of protocol version.

Cipher suites Table 2

– Public key algorithms RSA (1024, 2048), ECDSA

– Key-exchange/agreement ECDH, ECDHE

– Symmetric ciphers for
encryption

AES (128 and 256, CBC), 3DES, ARC4

– Hash MD5, SHA-1, SHA-256

– ECC support EC curves over 192, 224, 384, 256, 521 bit prime field

Certificates X.509 certificate support, PEM format.

Configurations

Anonymous

For module configuration, see Section 2.4.1 and Figure 5.

One-way authentication

For module configuration, see Section 2.4.2 and Figure 6. In
particular notice that:

– Module reference time must be initialized
– Root CA certificate and domain name of the server must be

loaded.
– Authentication ciphers: ECDSA with all EC curves, RSA-1024

and RSA-2048.
– Maximum allowed size for files uploaded to module is

approximately 1.3KB.

Mutual authentication

For module configuration, see Section 2.4.3 and Figure 7. In
particular:

– Module reference time must be initialized
– Root CA certificate and domain name of the server, client

certificate and client key files must be loaded.
– Authentication ciphers: ECDSA with all EC curves.
– Maximum allowed size for files uploaded to module is

approximately 3KB overall.

Demonstration package AN4683

18/31 DocID027745 Rev 1

Project/examples: contained here are the certificates and configuration files for test
examples.

The examples folder contains four test examples for creating a TLS secure connection
between the SPWF01Sxxx module (client) and a remote server:

• Example 1: TLS Client with Mutual authentication. The client, server and CA use ECC
authentication (Section 3.3).

• Example 2: TLS Client with one-way authentication. The server and CA use RSA-2048
authentication (Section 3.2)

• Example 3: Gmail SMTP server access with Anonymous negotiation (Section 3.5).

• Example 4: Xively example with Anonymous negotiation (Section 3.6)

3.2 Wi-Fi module setup
This section describes the essential steps for setting up the SPWF01Sxxx module to enable
the TLS features. A complete list of AT commands, including a detailed description of the
use of the commands, are contained in (see [2] in References).

To couple the SPWF01Sxxx module with a Wi-Fi access point (SSID, WPA-PSK
passphrase) providing a connection to the Local Area Network (LAN) and to the Internet,
these are the necessary AT commands:
AT+S.SCFG=wifi_mode,0

AT+S.SCFG=wifi_priv_mode,2

AT+S.SSIDTXT=<SSID>

AT+S.SCFG=wifi_wpa_psk_text,<WPA PSK passphrase>

AT+S.SCFG=wifi_mode,1

AT&W

AT+CFUN=1

Once the module is connected to the access point, it is ready to open a secure socket.

Notice that, due to memory limitations, the SPWF01Sxxx module allows the opening of one
single secure socket at a time; i.e. if you want to open a new secure socket, you must first
close any open one.

3.3 Example 1: TLS Client with mutual authenticatio n
This first example implements a TLS connection supporting mutual authentication. The
client, server and CA use EC cipher.

Before running this example, the SPWF01Sxxx (client) must be connected to the Wi-Fi LAN
as illustrated in Section 3.2 and OpenSSL must be installed on the PC (acting as server).
For testing purposes, OpenSSL-1.0.1i has been used as TLS Server. Documentation and
installation instructions are available on the OpenSSL website (see [12] in References).

The IP addresses of the client and server are automatically assigned by the network router.

To start the server, open a command prompt in the folder Project/Examples/Example1 and
run this line:

openssl s_server -cert server_cert.pem -key server_key.pem -CAfile
root_ca_of_client.pem -Verify 2 -verify_return_error -accept <port>

DocID027745 Rev 1 19/31

AN4683 Demonstration package

31

Note: The accept parameter specifies the TCP port to listen for connections. If not specified, the
default 4433 is used.

To start the client, it is recommended to run AT+S.TLSCERT2=clean,all to clean the Flash
memory, and then use these AT commands:

AT+S.SETTIME=<seconds>

AT+S.TLSCERT=f_ca,<size><CR><data>

AT+S.TLSCERT=f_cert,<size><CR><data>

AT+S.TLSCERT=f_key,<size><CR><data>

AT+S.TLSDOMAIN=f_domain,<server domain>

AT+S.SOCKON=<hostname>,<port>,s[,ind]

Note: Seconds is the current time expressed in seconds since 1970-01-01: AT+S.SETTIME can
be done only once after module reset.

AT+S.TLSCERT=<f_ca/f_cert/f_key>,<size><CR><data> stores certificates or key files (in
PEM format) to Flash memory of the module. The first input parameter is used to indicate
when a root CA certificate (f_ca), a client certificate (f_cert) or key file (f_key) is passed to
the module. This command accepts data after the <CR> at the end of the command line.
The host is expected to supply <size> of data as last parameter of the command line. The
size values must be expressed in bytes.

AT+S.TLSDOMAIN=f_domain,<server domain> passes the server domain to the module
and stores the domain information to Flash memory. The server domain is a string of
characters that must match the name specified in the server certificate (Common Name or
others).

When using AT+S.TLSCERT and AT+S.TLSDOMAIN with f_ca, f_cert, f_key and f_domain,
the file information is stored to Flash memory: since Flash memory is non-volatile, any file
stored in Flash memory will remain intact even when switching off or resetting the module.
Thus, to remove file information from Flash you can use the command
AT+S.TLSCERT2=clean,<f_ca|f_cert|f_key|f_domain> to selectively remove a specific file,
or AT+S.TLSCERT2=clean,all to remove all files information from Flash ones.

Note that loading files to Flash memory is always preferred! Alternatively, you may use
AT+S.TLSCERT=<ca/cert/key>,<size><CR><data> and
AT+S.TLSDOMAIN=domain,<server domain> to load files to RAM, but note that (a) RAM is
volatile and in this case the loaded file information is lost after switch off or module reset; (b)
files stored in RAM have higher priority than Flash ones; (c) files upload to RAM is
deprecated in favor of Flash.

AT+S.SOCKON=<hostname>,<port>,s[,ind] opens a secure socket to server hostname on
port. The hostname is the IP address of the server, the port must correspond to the one
specified in OpenSSL server options, and the s parameter specifies a request for secure
socket. The parameter ind is optional and provides the indication (WIND:55, see below) that
some data has been received: if enabled, it is strongly suggested to immediately empty the
buffer when a pending data is received (see SOCKQ and SOCKR commands below).

When the TLS handshake is successful, the AT+S.SOCKON gives back the sock id: only
then is it possible to write data to and read from the secure socket using AT+S.SOCKW,
AT+S.SOCKQ and AT+S.SOCKR.

If the parameter ind was enabled in SOCKON, asynchronous indications of pending data
from the secure socket may arrive at any time and have the format:

<CR><LF>+WIND:55:Pending Data:<sock id>:ENC<CR><LF>

Demonstration package AN4683

20/31 DocID027745 Rev 1

When WIND:55 indications occur, the pending data is still encrypted, thus the length of
decrypted data is not known in advance. The SOCKQ can be used to get the actual length
of the data decrypted by TLS library and already waiting for reading.

Up to 4 consecutive WIND:55 messages (w/o SOCKR) are guaranteed. To prevent data
loss, it is suggested to empty the buffer by using the AT+S.SOCKR command and to avoid
exceeding 4 indications.

AT+S.SOCKW=<sock id>,<len>

AT+S.SOCKQ=<sock id>

AT+S.SOCKR=<sock id>,<len>

Note: When using a secure socket, the module can handle data packets up to 3 KB. This means
that the len parameter in AT+S.SOCKW and AT+S.SOCKR can be up to 3072 bytes.

Detailed description of AT commands is contained in (see [2] in References).

3.4 Example 2: TLS Client with one-way authenticati on
This second example implements a TLS connection supporting one-way authentication. The
server and CA use RSA-2048 authentication.

Before running the example, the SPWF01Sxxx (client) must be connected to the Wi-Fi LAN
as illustrated in Section 3.2 and OpenSSL must be installed on the PC (acting as server).
For testing purposes, OpenSSL-1.0.1i has been used as TLS Server. Documentation and
installation instructions are available on the OpenSSL website (see [12] in References).

The IP addresses of the client and server are automatically assigned by the network router.

To start the server, open a command prompt into the folder Project/Examples/Example2 and
run this line:
openssl s_server -cert server_cert.pem -key server_key.pem -accept <port>

Note: The accept parameter specifies the TCP port to listen on for connections. If not specified,
the default 4433 is used.

To start the client, it's recommended to run AT+S.TLSCERT2=clean,all to clean the Flash
memory, and then use these AT commands:

AT+S.SETTIME=<seconds>

AT+S.TLSCERT=f_ca,<size><CR><data>

AT+S.TLSDOMAIN=f_domain,<server domain>

AT+S.SOCKON=<hostname>,<port>,s[,ind]

Note: Seconds is the current time expressed in seconds since 1970-Jan-01: AT+S.SETTIME can
be done only once after module reset.

AT+S.TLSCERT=<f_ca/f_cert/f_key>,<size><CR><data> stores certificates or key files to
the module. In case of one-way authentication, only the CA certificate (f_ca) must be
loaded, the data must be in PEM format. This command accepts data after the <CR> at the
end of the command line. The host is expected to supply <size> of data as last parameter of
the command line. The size values must be expressed in bytes.

AT+S.TLSDOMAIN=f_domain,<server domain> passes the server domain to the module
and stores the domain information to Flash memory. The server domain is a string of

DocID027745 Rev 1 21/31

AN4683 Demonstration package

31

characters that must match the name specified in the server certificate (Common Name or
others).

When using AT+S.TLSCERT and AT+S.TLSDOMAIN with f_ca, f_cert, f_key and f_domain,
the file information is stored to Flash memory: since Flash memory is non-volatile, any file
stored in Flash memory will remain intact even when switching off or resetting the module.
Thus, to remove file information from Flash you can use the command
AT+S.TLSCERT2=clean,<f_ca|f_cert|f_key|f_domain> to selectively remove a specific file,
or AT+S.TLSCERT2=clean,all to remove all files information from Flash.

Note: Loading files to Flash memory is always preferred! Alternatively, you can use
AT+S.TLSCERT=<ca/cert/key>,<size><CR><data> and
AT+S.TLSDOMAIN=domain,<server domain> to load files to RAM, but note that:

a) RAM is volatile and in this case the loaded file information is lost after switch off or
module reset

b) files stored in RAM have higher priority than those in Flash

c) file upload to RAM is deprecated in favor of Flash

AT+S.SOCKON=<hostname>,<port>,s[,ind] opens a secure socket to server hostname on
port. The hostname is the IP address of the server, the port must correspond to the one
specified in OpenSSL server options, and the s parameter specifies a request for secure
socket. The parameter ind is optional and provides the indication (WIND:55, see below) that
some data has been received: if enabled, it is strongly suggested to immediately empty the
buffer when pending data is received (see SOCKQ and SOCKR commands below).

When the TLS handshake is successful, the AT+S.SOCKON gives back the sock id: only
then is it possible to write data to and read from the secure socket using AT+S.SOCKW,
AT+S.SOCKQ and AT+S.SOCKR.

If the parameter ind was enabled in SOCKON, asynchronous indications of pending data
from the secure socket may arrive at any time and have the format:

<CR><LF>+WIND:55:Pending Data:<sock id>:ENC<CR><LF>

When WIND:55 indications occur, the pending data is still encrypted, thus the length of
decrypted data is not known in advance. The SOCKQ can be used to get the actual length
of the data decrypted by TLS library and already waiting for reading.

Up to 4 consecutive WIND:55 messages (w/o SOCKR) are guaranteed. To prevent data
loss, it is suggested to empty the buffer by using the AT+S.SOCKR command and to avoid
exceeding 4 indications.
AT+S.SOCKW=<sock id>,<len>

AT+S.SOCKQ=<sock id>

AT+S.SOCKR=<sock id>,<len>

Note: when using a secure socket, the module can handle data packets up to 3 KB. This means
that the len parameter in AT+S.SOCKW and AT+S.SOCKR can be up to 3072 bytes.

Detailed description of AT commands is contained in (see [2] in References).

Demonstration package AN4683

22/31 DocID027745 Rev 1

3.5 Example 3: Gmail SMTP server access with anonym ous
negotiation
To protect SMTP communications, server can use SSL/TLS encryption to provide
authentication and information encryption. To enable the SMTP client to verify the SMTP
server certificate, the issuing CA certificates should be made available to the client. In this
case the CA certificate is not provided and the client is not expected to verify server
certificate. Even the SMTP client is not providing its certificate, so the negotiation is
anonymous.

For the purpose of the example, the Gmail SMTP server is used. Since it requires SMTP
authorization, a Gmail account is needed for <username> (the full Gmail address, e.g.
example@gmail.com) and <password> options.

To access SMTP server, it is recommended to run AT+S.TLSCERT2=clean,all to clean the
Flash memory and then open a secure connection on port 465:

AT+S.SOCKON=smtp.gmail.com,465,s

In this example, the parameter ind is omitted: if enabled, this option requires to read the
socket when a pending indication message is received.

When the TLS handshake is successful, the AT+S.SOCKON gives back the sock id: only
then is it possible to use the AT+S.SOCKW to make the login on Gmail server by sending
first “EHLO” command and then “AUTH PLAIN” with your credentials using the base64
encoded username/password.

3.6 Example 4: Xively example with anonymous negoti ation
Xively is a cloud platform for developing and managing commercial services on the Internet
of Things. Xively ensures protected communication channels by using SSL/TLS
authentication and encryption. In this example the CA certificate is not provided and the
client is not expected to verify the server certificate. The client is not providing its certificate,
so the negotiation is anonymous.

To access Xively server, it is recommended to run AT+S.TLSCERT2=clean,all to clean the
Flash memory and then open a secure connection on port 8091:
AT+S.SOCKON=api.xively.com,8091,s

In this example the parameter ind is omitted: if enabled, this option requires to read the
socket when a pending indication message is received.

3.7 Example 5: connect to HTTPS my.st.com
This example shows how to use the Wi-Fi module as a TLS client to connect to a secure
HTTPS server and to send/receive HTTP requests/replies.

The HTTPS server we want to connect to is https://my.st.com.

In this example we are not verifying the server’s certificate (anonymous negotiation), so we
are not uploading any certificate to the module. In case you need to authenticate the server,
you have to configure the module as in example 2 (properly set the appropriate CA
certificate, domain name and time).

DocID027745 Rev 1 23/31

AN4683 Demonstration package

31

The first step is to open the secure connection to the HTTPS server: it is recommended to
run AT+S.TLSCERT2=clean,all to clean the Flash memory and then open a secure
connection to hostname my.st.com on port 443 as below. Note that the parameter ind is
enabled to activate asynchronous indications of pending data from the server.

AT+S.SOCKON=my.st.com,443,s,ind<CR>

<CR><LF>

 ID: 00<CR><LF>

<CR><LF>

OK

When the TLS Handshake is successful, the AT+S.SOCKON gives back the sock id and all
the data exchanged from now on are encrypted with the newly established session key.

The second step is to send an HTTPS message to the server: the following code shows how
to use the AT+S.SOCKW to send a basic HTTP GET request:
AT+S.SOCKW=00,18<CR>

GET / HTTP/1.1<CR><LF>

<CR><LF>

OK

The server response to the above GET request is signaled by a couple of asynchronous
indications (see the WIND:55 in the box below). In order to get and decrypt the received
data, we have to iteratively call AT+S.SOCKQ and AT+S.SOCKR to process all the received
pending data as follows:

+WIND:55:Pending Data:0:ENC<CR><LF>

<CR><LF>

+WIND:55:Pending Data:0:ENC<CR><LF>

AT+S.SOCKQ=00<CR>

<CR><LF>

 DATALEN: 483<CR><LF>

<CR><LF>

OK

AT+S.SOCKR=00,483<CR>

HTTP/1.1 302 Found<CR><LF>

Date: Tue, 31 Mar 2015 08:48:16 GMT<CR><LF>

Location: https://my.st.com/cas/login?service=https://my.st.com/<CR><LF>

Content-Length: 238<CR><LF>

Content-Type: text/html; charset=iso-8859-1<CR><LF>

Proxy-Connection: Keep-Alive<CR><LF>

Connection: Keep-Alive<CR><LF>

<CR><LF>

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"><LF>

<html><head><LF>

Demonstration package AN4683

24/31 DocID027745 Rev 1

<title>302 Found</title><LF>

</head><body><LF>

<h1>Found</h1><LF>

<p>The document has moved here.</p
><LF>

</body></html><LF><CR>

<LF>

OK

AT+S.SOCKQ=00<CR>

<CR><LF>

 DATALEN: 0<CR><LF>

<CR><LF>

OK

DocID027745 Rev 1 25/31

AN4683 Known limitations and revisions

31

4 Known limitations and revisions

Due to PODDLE vulnerability (see [13] in References), there are plans to drop SSL3.0
support in future releases of this firmware.

Glossary AN4683

26/31 DocID027745 Rev 1

5 Glossary

AES Advanced encryption standard

Camelia Block cipher developed by Mitsubishi and NTT

DES Data encryption standard

DH Diffie-Hellman

DHE Diffie-Hellman ephemeral

DSA Digital signature algorithm

DSS Digital signature standard

ECDH Elliptic-curve Diffie-Hellman

ECDSA Elliptic curve digital signature algorithm

HMAC keyed-hash message authentication code

HTTPS Hypertext transfer protocol secure

IANA Internet assigned numbers authority

IDEA International data encryption algorithm

IETF Internet engineering task force

KRB5 Kerberos

MAC Message authentication code

MD5 Message digest algorithm 5

PSK Pre-shared key

RSA Rivest, Shamir, Adleman

RC4 Rivest cipher 4

SHA Secure hash algorithm

SRP Secure remote password protocol

SSL Secure sockets layer

TLS Transport layer security

3DES Triple data encryption algorithm

DocID027745 Rev 1 27/31

AN4683 References

31

6 References

1. SPWF01Sxxx WiFi module, www.st.com/wifimodules

2. UM1695 - “Command set reference guide for AT full stack for SPWF01Sx series of Wi-
Fi modules”, User Manual of SPWF01Sxxx,

3. The “Transport Layer Security (TLS) Protocol Version 1.2”, RFC 5246,
http://tools.ietf.org/html/rfc5246

4. “Transport Layer Security”, Wikipedia,
http://en.wikipedia.org/wiki/Transport_Layer_Security

5. http://www.symantec.com/connect/articles/apache-2-ssltls-step-step-part-1

6. IANA registry, http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

7. “Certificates and Authentication”, RedHat portal,
https://access.redhat.com/site/documentation/en-
US/Red_Hat_Certificate_System/8.0/html/Deployment_Guide/Introduction_to_Public_
Key_Cryptography-Certificates_and_Authentication.html

8. “A String Representation of Distinguished Names”, RFC 4514,
http://www.ietf.org/rfc/rfc4514.txt.

9. “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile”, RFC 3280, http://tools.ietf.org/html/rfc3280

10. “Digital certificates”, IBM information center,
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq
.csqzas.doc%2Fsy10600_.htm

11. Server Name Indication, Wikipedia,
http://en.wikipedia.org/wiki/Server_Name_Indication

12. OpenSSL website, www.openssl.org

13. CVE-2014-3566, CVE list of security vulnerabilities, http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3566, 14/Oct-2014.

Certificate generation with OpenSSL AN4683

28/31 DocID027745 Rev 1

Appendix A Certificate generation with OpenSSL

OpenSSL is an open-source implementation for PC platforms (Win, *nix, Mac) of the
SSL/TLS protocols providing both client and server functionalities. The core library, written
in the C programming language, implements the basic cryptographic functions and provides
various utility functions. For testing purposes, OpenSSL-1.0.1i has been used as TLS
Server. For documentation and installation instructions, please refer to OpenSSL website
(see [12] in References).

Just for example purposes, included below are the OpenSSL commands to generate RSA
and EC compatible certificates and associated private keys.

Example for generating RSA signed certificates:

Generate key pair and a self-signed certificate for the CA (trusted certificate):

1. openssl genpkey -out ca_key.pem -outform PEM -algorithm rsa -pkeyopt
rsa_keygen_bits:1024

2. openssl req -new -key ca_key.pem -days 6500 -set_serial 1111 -subj
“/C=IT/ST=Lombardia/L=Milan/O=STM/OU=R&D/CN=CA domain” -out ca_cert.pem -
x509

Generate server certificate/key pair:

3. openssl genpkey -out server_key.pem -outform PEM -algorithm rsa -pkeyopt
rsa_keygen_bits:1024

4. openssl req -new -key server_key.pem -days 6500 -set_serial 2222 -subj
“/C=IT/ST=Lombardia/L=Milan/O=STM/OU=R&D/CN=server domain” -out
server_cert_req.pem

5. openssl ca -in server_cert_req.pem -out server_cert.pem -days 6500 -keyfile
ca_key.pem -cert ca_cert.pem -notext -batch

Generate client certificate/key pair:

6. openssl genpkey -out client_key.pem -outform PEM -algorithm rsa -pkeyopt
rsa_keygen_bits:1024

7. openssl req -new -key client_key.pem -days 6500 -set_serial 3333 -subj
“/C=IT/ST=Lombardia/L=Milan/O=STM/OU=R&D/CN=client domain” -out
client_cert_req.pem

8. openssl ca -in client_cert_req.pem -out client_cert.pem -days 6500 -keyfile
ca_key.pem -cert ca_cert.pem -notext -batch

Example for generating ECC signed certificates:

Generate key pair and a self-signed certificate for the CA (trusted certificate):

1. openssl ecparam -out ca_key.pem -name prime192v1 -genkey

2. openssl req -new -key ca_key.pem -days 6500 -set_serial 1111 -subj
“/C=IT/ST=Lombardia/L=Milan/O=STM/OU=R&D/CN=CA domain” -out ca_cert.pem -
x509

DocID027745 Rev 1 29/31

AN4683 Certificate generation with OpenSSL

31

Generate server certificate/key pair-

3. openssl ecparam -out server_key.pem -name prime192v1 -genkey

4. openssl req -new -key server_key.pem -days 6500 -set_serial 2222 -subj
“/C=IT/ST=Lombardia/L=Milan/O=STM/OU=R&D/CN=server domain” -out
server_cert_req.pem

5. openssl ca -in server_cert_req.pem -out server_cert.pem -days 6500 -keyfile
ca_key.pem -cert ca_cert.pem -notext -batch

Generate client certificate/key pair:

6. openssl ecparam -out client_key.pem -name prime192v1 -genkey

7. openssl req -new -key client_key.pem -days 6500 -set_serial 3333 -subj
“/C=IT/ST=Lombardia/L=Milan/O=STM/OU=R&D/CN=client domain” -out
client_cert_req.pem

8. openssl ca -in client_cert_req.pem -out client_cert.pem -days 6500 -keyfile
ca_key.pem -cert ca_cert.pem -notext -batch

Revision history AN4683

30/31 DocID027745 Rev 1

7 Revision history

Table 4. Document revision history

Date Revision Changes

07-May-2015 1 Initial release.

DocID027745 Rev 1 31/31

AN4683

31

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	Heading1 - 1 SSL/TLS protocol overview
	Heading2 - 1.1 SSL/TLS sub-protocols
	Heading3 - 1.1.1 Handshake protocol
	Heading3 - 1.1.2 Change cipher spec protocol
	Heading3 - 1.1.3 Alert protocol
	Heading3 - 1.1.4 Record protocol

	Heading2 - 1.2 Authentication and certificates

	Heading1 - 2 SPWF01Sxxx use modes
	Heading2 - 2.1 TLS protocol
	Heading2 - 2.2 Supported ciphers list
	Heading2 - 2.3 Domain name check for server certificate
	Heading2 - 2.4 Authentication
	Heading3 - 2.4.1 Anonymous negotiation
	Heading3 - 2.4.2 One-way authentication
	Heading3 - 2.4.3 Mutual authentication

	Heading2 - 2.5 Protocol version downgrade
	Heading2 - 2.6 Pseudo random number generator

	Heading1 - 3 Demonstration package
	Heading2 - 3.1 Package directories
	Heading2 - 3.2 Wi-Fi module setup
	Heading2 - 3.3 Example 1: TLS Client with mutual authentication
	Heading2 - 3.4 Example 2: TLS Client with one-way authentication
	Heading2 - 3.5 Example 3: Gmail SMTP server access with anonymous negotiation
	Heading2 - 3.6 Example 4: Xively example with anonymous negotiation
	Heading2 - 3.7 Example 5: connect to HTTPS my.st.com

	Heading1 - 4 Known limitations and revisions
	Heading1 - 5 Glossary
	Heading1 - 6 References
	AppxHeading1 - Appendix A Certificate generation with OpenSSL
	Heading1 - 7 Revision history

