

www.ti.com

LMH0056 HD/SD SDI Reclocker with 4:1 Input Multiplexer

Check for Samples: LMH0056

FEATURES

- Supports SMPTE 292M and SMPTE 259M (A & ٠ C) Serial Digital Video Standards
- Supports 143 Mbps, 270 Mbps, 1.483 Gbps, and 1.485 Gbps Serial Data Rate Operation
- Supports DVB-ASI at 270 Mbps •
- Single 3.3V Supply Operation
- 360 mW Typical Power Consumption .
- Integrated 4:1 Multiplexed Input
- **Two Differential, Reclocked Outputs**
- Choice of Second Reclocked Output or Low-Jitter, Differential, Data-Rate Clock Output
- Single 27 MHz External Crystal or Reference **Clock Input**
- Manual Rate Select Input
- SD/HD Operating Rate Indicator Output
- Lock Detect Indicator Output
- **Output Mute Function for Data and Clock**
- Auto/Manual Reclocker Bypass
- **Differential LVPECL Compatible Serial Data** • Inputs and Outputs
- LVCMOS Control Inputs and Indicator Outputs
- 48-Pin WQFN Package
- Industrial Temperature Range: -40°C to +85°C

APPLICATIONS

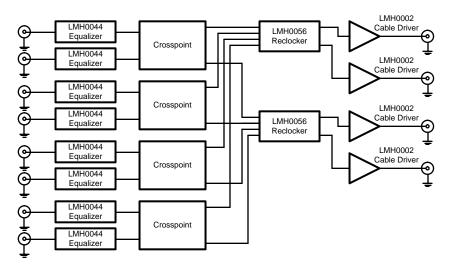
- SDTV/HDTV Serial Digital Video Interfaces for:
 - Digital Video Routers and Switchers
 - Digital Video Processing and Editing Equipment
 - DVB-ASI Equipment
 - Video Standards and Format Converters

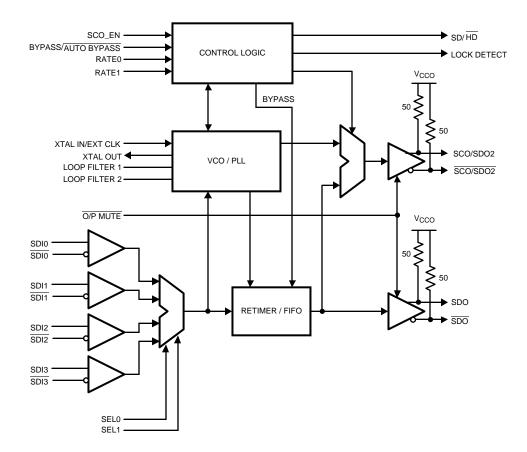
DESCRIPTION

The LMH0056 HD/SD SDI Reclocker with 4:1 Input Multiplexer retimes serial digital video data conforming to the SMPTE 292M and SMPTE 259M (A & C) standards. The LMH0056 operates at serial data rates of 143 Mbps, 270 Mbps, 1.483 Gbps and 1.485 Gbps. The LMH0056 supports DVB-ASI operation at 270 Mbps. The LMH0056 includes an integrated 4:1 input multiplexer for selecting one of four input data streams for retiming.

The LMH0056 automatically detects the incoming data rate and adjusts itself to retime the incoming data to suppress accumulated jitter. The LMH0056 recovers the serial data-rate clock and optionally provides it as an output. The LMH0056 has two differential serial data outputs; the second output may be selected as a low-jitter, data-rate clock output. Controls and indicators are: serial clock or second serial data output select, manual rate select input, SD/HD rate indicator output, lock detect output, auto/manual data bypass and output mute. The serial data inputs, outputs, and serial data-rate clock outputs are differential LVPECL compatible. The CML serial data and serial data-rate clock outputs are suitable for driving 100Ω differentially terminated networks. The control logic inputs and outputs are LVCMOS compatible.

The LMH0056 is powered from a single 3.3V supply. Power dissipation is typically 360 mW. The device is housed in a 48-pin WQFN package.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.


www.ti.com

SNLS236C - AUGUST 2006 - REVISED APRIL 2013

Typical Application

Block Diagram

Connection Diagram

www.ti.com

SNLS236C - AUGUST 2006 - REVISED APRIL 2013

SCO_EN RATE1 **RATEO SELO** SEL1 LF2 Ē VEE V νEE Vee V VEE V 47 48 37 46 40 39 38 45 43 42 44 41 SDI0 36 SD/HD 1 2 35 SDI0 V_{CC} V_{CC} 3 34 V_{CC} 33 SDI1 SDO 4 32 SDO **SDI1** 5 Vcc 31 6 LMH0056 V_{CC} (top view) SDI2 30 7 Vcc SDI2 8 29 SCO/SDO2 28 SCO/SDO2 V_{CC} 9 SDI3 27 $\mathsf{V}_{\mathsf{E}\mathsf{E}}$ 10 SDI3 26 11 $\mathsf{V}_{\mathsf{E}\mathsf{E}}$ 25 Vcc 12 V_{EE} 23 24 16 17 19 20 21 22 14 15 13 18 O/P MUTE XTAL IN/ EXT CLK BYPASS/ AUTOBYPASS VEE VEE ΛEE XTAL OUT ΛEE ΛEE VEE Vcc LOCK DET

The exposed die attach pad is the primary negative electrical terminal for this device. It must be connected to the negative power supply voltage.

Figure 1. 48-Pin WQFN Package See Package Number RHS0048A

PIN DESCRIPTIONS

Pin No.	Name	Description
1	SDI0	Data Input 0 True
2	SDI0	Data Input 0 Complement
3	V _{CC}	Positive power supply input
4	SDI1	Data Input 1 True
5	SDI1	Data Input 1 Complement
6	V _{CC}	Positive power supply input
7	SDI2	Data Input 2 True
8	SDI2	Data Input 2 Complement
9	V _{CC}	Positive power supply input
10	SDI3	Data Input 3 True
11	SDI3	Data Input 3 Complement
12	V _{CC}	Positive power supply input
13	V _{EE}	Negative power supply input
14	V _{CC}	Positive power supply input
15	BYPASS/AUTO BYPASS	Bypass/Auto Bypass mode select

Copyright © 2006–2013, Texas Instruments Incorporated

www.ti.com

PIN DESCRIPTIONS (continued)

Pin No.	Name	Description	
16	OUTPUT MUTE	Data and Clock Output Mute input (active low)	
17	V _{EE}	Negative power supply input	
18	XTAL IN/EXT CLK	Crystal or External Oscillator input	
19	V _{EE}	Negative power supply input	
20	V _{EE}	Negative power supply input	
21	V _{EE}	Negative power supply input	
22	XTAL OUT	Crystal Oscillator output	
23	V _{EE}	Negative power supply input	
24	LOCK DETECT	PLL Lock Detect output (active high)	
25	V _{EE}	Negative power supply input	
26	V _{EE}	Negative power supply input	
27	V _{EE}	Negative power supply input	
28	SCO/SDO2	Serial Clock or Serial Data Output 2 Complement	
29	SCO/SDO2	Serial Clock or Serial Data Output 2 True	
30	V _{CC}	Positive power supply input	
31	V _{CC}	Positive power supply input	
32	SDO	Data Output Complement	
33	SDO	Data Output True	
34	V _{CC}	Positive power supply input	
35	V _{CC}	Positive power supply input	
36	SD/HD	Data Rate Range output	
37	SCO_EN	Serial Clock or Serial Data 2 Output select (active high enables serial clock output)	
38	V _{EE}	Negative power supply input	
39	V _{EE}	Negative power supply input	
40	V _{EE}	Negative power supply input	
41	V _{EE}	Negative power supply input	
42	V _{EE}	Negative power supply input	
43	LF1	Loop Filter	
44	LF2	Loop Filter	
45	RATE 0	Data Rate select input	
46	RATE 1	Data Rate select input	
47	SEL0	Data Input select input	
48	SEL1	Data Input select input	
DAP	V _{EE}	Connect exposed DAP to negative power supply (ground)	

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

XAS STRUMENTS

SNLS236C - AUGUST 2006 - REVISED APRIL 2013

www.ti.com

Absolute Maximum Ratings⁽¹⁾⁽²⁾

Supply Voltage (V _{CC} -V _{EE})	4.0V
Logic Supply Voltage (Vi)	V_{EE} =0.15V to V_{CC} =0.15V
Logic Input Current (single input):	
$Vi = V_{EE} - 0.15V$	-5 mA
$Vi = V_{CC} + 0.15V$	+5 mA
Logic Output Voltage (Vo)	V_{EE} =0.15V to V_{CC} =0.15V
Logic Output Source/Sink Current	±8 mA
Serial Data Input Voltage (V _{SDI})	V _{CC} to V _{CC} -2.0V
Serial Data Output Sink Current (I _{SDO})	24 mA
Package Thermal Resistance	
θ _{JA} 48-pin WQFN	26.1°C/W
θ _{JC} 48-pin WQFN	1.9°C/W
Storage Temp. Range	−65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (Soldering 4 Sec)	+260°C (Pb-free)
ESD Rating (HBM)	8 kV
ESD Rating (MM)	400V
ESD Rating (CDM)	1250V

(1) "Absolute Maximum Ratings" are those parameter values beyond which the life and operation of the device cannot be ensured. The stating herein of these maximums shall not be construed to imply that the device can or should be operated at or beyond these values. The table of "Electrical Characteristics" specifies acceptable device operating conditions. It is anticipated that this device will not be offered in a military qualified version. If Military/Aerospace specified devices are

(2) required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

Recommended Operating Conditions

Supply Voltage (V _{CC} –V _{EE})	3.3V ±5%
Logic Input Voltage	V_{EE} to V_{CC}
Differential Serial Input Voltage	800 mV ±10%
Serial Data or Clock Output Sink Current (I _{SO})	16 mA max.
Operating Free Air Temperature (T _A)	-40°C to +85°C

www.ti.com

DC Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified. (1) (2)

Symbol	Parameter	Conditions	Reference	Min	Тур	Max	Units
VIH	Input Voltage High Level		Logic inputs	2		V _{CC}	V
V _{IL}	Input Voltage Low Level			V _{EE}		0.8	V
I _{IH}	Input Current High Level	$V_{IH} = V_{CC}$			1	65	μA
IIL	Input Current Low Level	$V_{IL} = V_{EE}$			-1	-25	μA
V _{OH}	Output Voltage High Level	I _{OH} = −2 mA	Logic outputs	2			V
V _{OL}	Output Voltage Low Level	$I_{OL} = +2 \text{ mA}$				V _{EE} + 0.6	V
V _{SDID}	Serial Input Voltage, Differential		SDI	200		1600	mV _{P-P}
V _{CMI}	Input Common Mode Voltage			V _{CC} -1.6		V _{CC} -0.2	V
V _{SDOD}	Serial Output Voltage, Differential	100Ω differential load	SDO, SCO	720	800	880	mV _{P-P}
V _{CMO}	Output Common Mode Voltage	100Ω differential load			V _{CC} - V _{SDOD}		V
I _{CC}	Power Supply Current, 3.3V supply, Total	1485 Mbps, NTSC color bar pattern			109		mA

Current flow into device pins is defined as positive. Current flow out of device pins is defined as negative. All voltages are referenced to V_{EE} (equal to zero volts).
 Typical values are stated for: V_{CC} = +3.3V, T_A = +25°C.

www.ti.com

AC Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.⁽¹⁾

Symbol	Parameter	Conditions	Reference	Min	Тур	Max	Units
BR _{SD}	Serial Data Rate	SMPTE 259M, A	SDI, SDO		143		Mbps
BR _{SD}	Serial Data Rate	SMPTE 259M, C			270		Mbps
BR _{SD}	Serial Data Rate	SMPTE 292M			1483, 1485		Mbps
TOL _{JIT}	Serial Input Jitter Tolerance	143 or 270 Mbps ⁽²⁾⁽³⁾⁽⁴⁾	SDI		>6		UI _{P-P}
TOL _{JIT}	Serial Input Jitter Tolerance	143 or 270 Mbps ⁽²⁾⁽⁵⁾⁽⁶⁾		>0.6			UI _{P-P}
TOL _{JIT}	Serial Input Jitter Tolerance	1483 or 1485 Mbps ⁽²⁾⁽⁵⁾⁽³⁾		>6			UI _{P-P}
TOL _{JIT}	Serial Input Jitter Tolerance	1483 or 1485 Mbps ⁽²⁾⁽⁵⁾⁽⁶⁾		>0.6			UI _{P-P}
t _{JIT}	Serial Data Output Jitter	143 Mbps ⁽⁵⁾⁽⁷⁾	SDO		0.02	0.08	UI _{P-P}
t _{JIT}	Serial Data Output Jitter	270 Mbps ⁽⁵⁾⁽⁷⁾			0.02	0.08	UI _{P-P}
t _{JIT}	Serial Data Output Jitter	1483 or 1485 Mbps ⁽⁵⁾⁽⁷⁾			0.05	0.1	UI _{P-P}
BW _{LOOP}	Loop Bandwidth	270 Mbps, <0.1dB Peaking			300		kHz
		1485 Mbps, <0.1dB Peaking			2.0		MHz
F _{CO}	Serial Clock Output Frequency	143 Mbps data rate	SCO		143		MHz
F _{CO}	Serial Clock Output Frequency	270 Mbps data rate	-		270		MHz
F _{CO}	Serial Clock Output Frequency	1483 Mbps data rate			1483		MHz
F _{CO}	Serial Clock Output Frequency	1485 Mbps data rate			1485		MHz
t _{JIT}	Serial Clock Output Jitter				2	3	ps _{RMS}
	Serial Clock Output Alignment with respect to Data Interval		SDO, SCO	40		60	%
	Serial Clock Output Duty Cycle		SCO	45		55	%
T _{ACQ}	Acquisition Time	Auto-Rate Detect Mode ⁽⁸⁾⁽⁹⁾			10	16	ms
		Fixed Rate Mode ⁽⁸⁾⁽⁹⁾			1	6	ms
t _r , t _f	Input rise/fall time	10%–90%	Logic inputs		1.5	3	ns
t _r , t _f	Input rise/fall time	20%–80%, 143 or 270 Mbps	SDI			1500	ps
t _r , t _f	Input rise/fall time	20%-80%, 1483 or 1485 Mbps				270	ps
t _r , t _f	Output rise/fall time	10%–90%	Logic outputs		1.5	3	ns
t _r , t _f	Output rise/fall time	20%-80% ⁽¹⁰⁾	SDO, SCO		90	130	ps
F _{REF}	Reference Clock Frequency				27		MHz
F _{TOL}	Reference Clock Frequency Tolerance				±50		ppm

Typical values are stated for: V_{CC} = +3.3V, T_A = +25°C. (1)

(2) Peak-to-peak amplitude with sinusoidal modulation per SMPTE RP 184-1996 paragraph 4.1. The test data signal shall be color bars.

(3)

Refer to "A1" in Figure 1 of SMPTE RP 184-1996. Characterized to the limitations of SDI test equipment. (4)

This parameter is specified by characterization over voltage and temperature limits. Refer to "A2" in Figure 1 of SMPTE RP 184-1996. (5)

(6)

Serial Data Output Jitter is total output jitter with 0.2UI_{P-P} input jitter. (7)

Spec is specified by design. (8)

Measured from first SDI transition until Lock Detect (LD) output goes high (true). (9)

(10) $R_L = 100\Omega$ differential.

www.ti.com

DEVICE DESCRIPTION

The LMH0056 HD/SD SDI Reclocker with 4:1 Input Multiplexer is used in many types of digital video signal processing equipment. Supported serial digital video standards are SMPTE 259M (A & C) and SMPTE 292M. Corresponding serial data rates are 143 Mbps, 270 Mbps, 1.483 Gbps and 1.485 Gbps. DVB-ASI data at 270 Mbps may also be retimed. The LMH0056 retimes the serial data stream to suppress accumulated jitter. It provides two low-jitter, differential, serial data outputs. The second output may be selected to output either serial data or a low-jitter serial data-rate clock. Controls and indicators are: serial data-rate clock or second serial data output select, manual rate select input, SD/HD rate output, lock detect output, auto/manual data bypass and output mute.

Serial data inputs are CML and LVPECL compatible. Serial data and data-rate clock outputs are differential CML and produce LVPECL compatible levels. The output buffer design can drive AC or DC-coupled, terminated 100 Ω differential loads. The differential output level is 800 mV_{P-P} ±10% into 100 Ω AC or DC-coupled differential loads. Logic inputs and outputs are LVCMOS compatible.

The device package is a 48-pin WQFN with an exposed die attach pad. The exposed die attach pad is electrically connected to device ground (V_{EE}) and is the primary negative electrical terminal for the device. This terminal must be connected to the negative power supply or circuit ground.

Serial Data Inputs, Serial Data and Clock Outputs

SERIAL DATA INPUT AND OUTPUTS

The differential serial data inputs, SDI0-SDI3, accept serial digital video data at the rates specified in Table 1. The serial data inputs are differential LVPECL compatible. These inputs are intended to be DC interfaced to devices such as the LMH0034 adaptive cable equalizer. These inputs are not internally terminated or biased. The inputs may be AC-coupled if a suitable input bias voltage is provided.

The LMH0056 provides four independent, multiplexed data inputs. The active input channel is selected via the SEL0 and SEL1 pins, as shown in Table 2. Figure 2 shows the equivalent input circuit for SDI[3:0] and SDI[3:0].

The LMH0056 has two, retimed, differential, serial data outputs, SDO and SCO/SDO2. These outputs provide low jitter, differential, retimed data to devices such as the LMH0002 cable driver or the LMH0031 deserializer. Output SCO/SDO2 is multiplexed and can provide either a second serial data output or a serial data-rate clock output. Figure 3 shows the equivalent output circuit for SDO, SDO, SCO/SDO2, and SCO/SDO2.

The SCO_EN input controls the operating mode for the SCO/SDO2 output. When the SCO_EN input is high the SCO/SDO2 output provides a serial data-rate clock. When SCO_EN is low, the SCO/SDO2 output provides retimed serial data.

Both differential serial data outputs, SDO and SCO/SDO2, are muted when the $\overline{\text{MUTE}}$ input is a logic low level. SCO/SDO2 also mutes when the Bypass mode is activated when this output is operating as the serial clock output. When muted, SDO and SDO (or SDO2 and SDO2) will assume opposite differential output levels. The CML serial data outputs are differential LVPECL compatible. These outputs have internal 50 Ω pull-ups and are suitable for driving AC or DC-coupled, 100 Ω center-tapped, AC grounded or 100 Ω un-center-tapped, differentially terminated networks.

www.ti.com

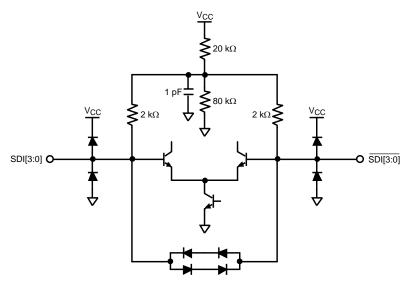


Figure 2. Equivalent SDI Input Circuit (SDI[3:0], SDI[3:0])

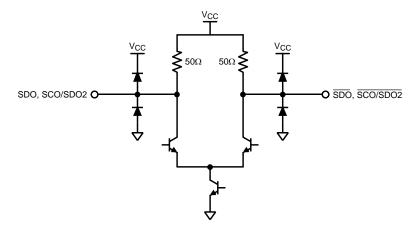


Figure 3. Equivalent SDO Output Circuit (SDO, SDO, SCO/SDO2, SCO/SDO2)

OPERATING SERIAL DATA RATES

This device operates at serial data rates of 143 Mbps, 270 Mbps, 1483 Mbps and 1485 Mbps. The device does not lock to harmonics of these rates. The device does not lock and automatically enters the reclocker bypass mode for the following data rates: 177 Mbps, 360 Mbps, and 540 Mbps.

SERIAL DATA CLOCK/SERIAL DATA 2 OUTPUT

The Serial Data Clock/Serial Data 2 Output is controlled by the SCO_EN input and provides either a second retimed serial data output or a low jitter differential clock output appropriate to the serial data rate being processed. When operating as a serial clock output, the rising edge of the clock will be positioned within the corresponding serial data bit interval within 10% of the center of the data interval.

Differential output SCO/SDO2 functions as the second serial data output when the SCO_EN input is a logic-low level. This output functions as the serial data-rate clock output when the SCO_EN input is a logic-high level. The SCO_EN input has an internal pull-down <u>device</u> and the default state of SCO_EN is low (serial data output 2 enabled). SCO/SDO2 is muted when the MUTE input is a logic low level. When the Bypass mode is activated and this output is functioning as a serial clock output, the output will also be muted.

Control Inputs and Indicator Outputs

SERIAL DATA RATE SELECTOR

The Serial Data Rate Selector (RATE [1:0]) permits the user to fix the operating serial data rate. The pins have internal pull-downs which maintain a logic-low input condition unless externally driven to a logic-high condition. This input also serves to place the device in a test mode. The codes shown in Table 1 select the desired operating serial data rate. The LMH0056 then enters either the Auto-Rate Detect mode or a single operating rate. Selecting the 270 Mbps rate mode may also be used when reclocking DVB-ASI data. DVB-ASI data is MPEG2 coded data that is transmitted in 8B10B coding. The device will reclock this data without harmonic locking.

Table 1. Data Rate Select Input Codes

RATE [1:0] Code	Data Rate or Mode	Comments
00	Auto-Rate Detect mode	143 Mbps rate operation supported only in ARD mode
01	270 Mbps	May be used to support DVB-ASI operation
10	1483/1485 Mbps	

SERIAL DATA INPUT SELECTOR

The Serial Data Input Selector (SEL [1:0]) allows the user to select the active input channel. Table 2 shows the input selected for a given state of SEL [1:0].

Table 2. Data Input Select Codes

SEL [1:0] Code	Selected Input
00	SDI0
01	SDI1
10	SDI2
11	SDI3

LOCK DETECT

The Lock Detect (<u>LD</u>) output, when high, indicates that data is being received and the PLL is locked. LD may be connected to the MUTE input to mute the data and clock outputs when no data signal is being received. See Table 3.

MUTE

The MUTE input, when low, mutes the serial data and clock outputs. It may be connected to Lock Detect or externally driven to mute or un-mute the outputs. If MUTE is connected to LD, then the data and <u>clock</u> outputs are muted when the PLL is not locked. This function overrides the Bypass function: see Table 3. MUTE has an internal pull-up device to enable the output by default.

BYPASS/AUTO BYPASS

The Bypass/Auto Bypass input, when high, forces the device to output the data without reclocking it. When this input is low, the device automatically bypasses the reclocking function when the device is in an unlocked condition or the detected data rate is a rate which the device does not support. See Table 3. BYPASS/AUTO BYPASS has an internal pull-down device.

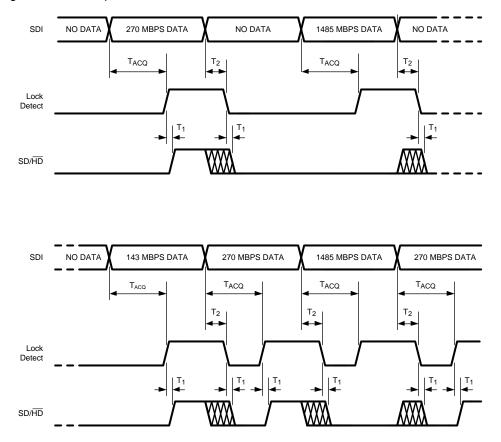

www.ti.com

Table 3.	Control	Functionality

LOCK DETECT	OUTPUT MUTE	BYPASS/AUTO BYPASS	DEVICE STATUS
0	1	0	PLL unlocked, reclocker bypassed
1	1	0	PLL locked to supported data rate, reclocker not bypassed
Х	0	Х	Outputs muted
0	LOCK DETECT	Х	Outputs muted
1	LOCK DETECT	0	PLL locked to supported data rate, reclocker not bypassed
1	LOCK DETECT	1	PLL locked to supported data rate, reclocker bypassed
Х	1	1	Outputs not muted, reclocker bypassed

SD/HD

The SD/HD output indicates whether the LMH0056 is processing SD or HD data rates. It may be used to control another device such as the LMH0002 cable driver. When this output is high it indicates that the data rate is 270 Mbps (or 143 Mbps). When low, the indicated data rate is 1483 or 1485 Mbps. The SD/HD output is a registered function and is only valid when the PLL is locked and the Lock Detect output is high. When the PLL is not locked (the Lock Detect output is low), the SD/HD output defaults to HD (low). The SD/HD output is undefined for a short time after lock detect assertion or de-assertion due to a data rate change on SDI. See Figure 4 for a timing diagram showing the relationship between SDI, Lock Detect, and SD/HD.

TACQ = Acquisition Time, defined in the AC Electrical Characteristics Table

 T_1 = Time from Lock Detect assertion or deassertion until SD/HD output is valid, typically 37 ns (one 27 MHz clock period) T_2 = Time from SDI input change until Lock Detect de-assertion, 1 ms maximum. SD/HD output is not valid during this time.

SCO_EN

Input SCO_EN enables the SCO/SDO2 differential output to function either as a serial data-rate clock or second serial data output. SCO/SDO2 functions as a serial data-rate clock when SCO_EN is high. This pin has an internal pull-down device. The default state (low) enables the SCO/SDO2 output as a second serial data output.

CRYSTAL OR EXTERNAL CLOCK REFERENCE

The LMH0056 uses a 27 MHz crystal or external clock signal as a timing reference input. A 27 MHz parallel resonant crystal and load network may be connected to the XTAL IN/EXT CLK and XTAL OUT pins. Alternatively, a 27 MHz LVCMOS compatible clock signal may be input to XTAL IN/EXT CLK. Parameters for a suitable crystal are given in Table 4.

rubio in orgonal runamonoro		Table 4.	Crystal	Parameters	
-----------------------------	--	----------	---------	------------	--

Parameter	Value
Frequency	27 MHz
Frequency Stability	±50 ppm @ recommended drive level
Operating Mode	Fundamental mode, Parallel Resonant
Load Capacitance	20 pF
Shunt Capacitance	7 pF
Series Resistance	40Ω max.
Recommended Drive Level	100 μW
Maximum Drive Level	500 μW
Operating Temperature Range	-10°C to +60°C

www.ti.com

APPLICATION INFORMATION

Figure 5 shows an application circuit for the LMH0056.

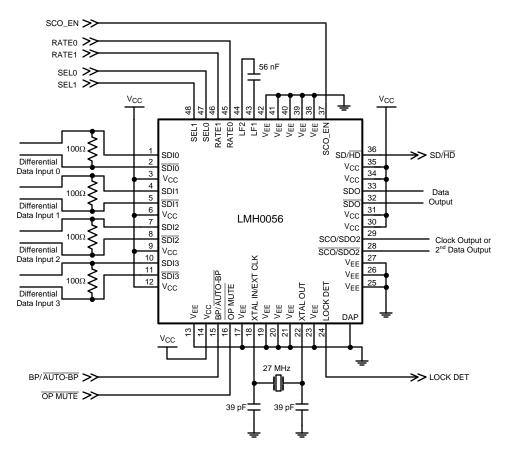


Figure 5. Application Circuit

Changes from Revision B (April 2013) to Revision C Page

•	Changed layout of National Data Sheet to TI format 1	13
---	--	----

www.ti.com

8-Oct-2015

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMH0056SQ/NOPB	ACTIVE	WQFN	RHS	48	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	L056	Samples
LMH0056SQE/NOPB	ACTIVE	WQFN	RHS	48	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	L056	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

8-Oct-2015

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

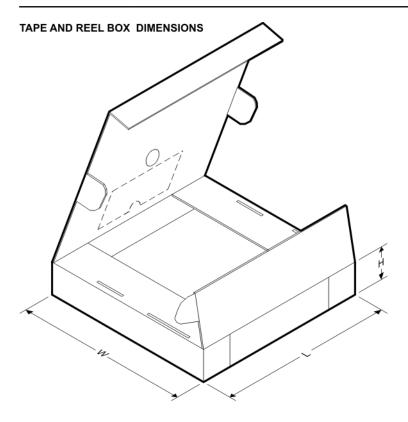
PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

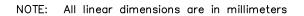

1	All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	LMH0056SQ/NOPB	WQFN	RHS	48	1000	330.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1
	LMH0056SQE/NOPB	WQFN	RHS	48	250	178.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Sep-2016



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMH0056SQ/NOPB	WQFN	RHS	48	1000	367.0	367.0	38.0
LMH0056SQE/NOPB	WQFN	RHS	48	250	210.0	185.0	35.0

RHS (S-PWQFN-N48) PLASTIC QUAD FLATPACK NO-LEAD THERMAL INFORMATION This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. **PIN 1 INDICATOR** (OPTIONAL)_ 12 1 Π Π U U U 48 \subset 13 \subset – Exposed Thermal Pad 0 \subset \subset \subset 5,10±0,10 \subset \subset \subset \subset C ₫24 37 25 36 5,10±0,10 Bottom View Exposed Thermal Pad Dimensions

4221096-2/B 03/14

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated