

MAX9650/MAX9651

High-Current VCOM Drive Op Amps for TFT LCDs

General Description

Features

The MAX9650/MAX9651 are single- and dual-channel VCOM amplifiers with rail-to-rail inputs and outputs. The MAX9650/MAX9651 can drive up to 1300mA of peak current per channel and operate up to 20V.

The MAX9650/MAX9651 are designed to source and sink a high current quickly to hold the VCOM voltage stable in large TFT-LCD panels.

The MAX9650/MAX9651 feature 40V/ μs slew rate and 35MHz bandwidth to quickly settle outputs for 120Hz frame rate and full HD television.

The MAX9650/MAX9651 feature output short-circuit protection and thermal shutdown. These devices are available in exposed pad packages for excellent heat dissipation.

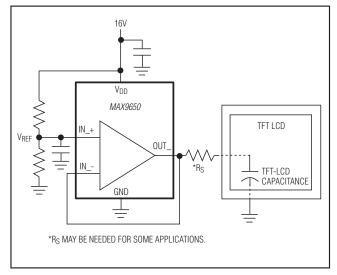
Applications

TFT-LCD Panels Instrument Control Voltage Sources

- 1300mA Peak Output Current
- Rail-to-Rail Inputs and Outputs
- Operates Up to 20V
- ♦ 40V/µs Slew Rate
- 35MHz Bandwidth
- ♦ 5mA Quiescent Current per Channel
- Excellent Heat Dissipation (Exposed Pad)

Ordering Information

PART	AMPS PER PACKAGE	PIN- PACKAGE	TOP MARK
MAX9650AZK+	1	5 SOT23	ADSI
MAX9650AZK/V+	1	5 SOT23	ADSK
MAX9650AUA+	1	8 µMAX-EP*	AABI
MAX9650ATA+	1	8 TDFN-EP*	BKX
MAX9651AUA+	2	8 µMAX-EP*	AABH
MAX9651ATA+	2	8 TDFN-EP*	BKY


Note: All devices are specified over the -40°C to +125°C operating range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

/V denotes an automotive qualified part.

*EP = Exposed pad.

Typical Operating Circuit

MAX9650/MAX9651

High-Current VCOM Drive Op Amps for TFT LCDs

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{DD} to GND)	0.3V to +22V
Any Other Pin to GND	0.3V to (V _{DD} + 0.3V)
IN_+/IN (current)	±20mA
OUT_ (current)	1.3A
Continuous Power Dissipation ($T_A = +70^\circ$	°C)
SOT23 (derate 3.7mW/°C above +70°	C)297.4mW
µMAX-EP (derate 12.9mW/°C	
above +70°C)	1030.9mW
TDFN-EP (derate 23.8mW/°C	
above +70°C)	1951.2mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 19V, V_{GND} = 0V, V_{CM} = V_{OUT} = V_{DD}/2, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRR		6		20	V
Quiescent Current	IDD	Per channel			3.7	8	mA
High Output Voltage	Voh	$I_H = +5mA$, $V_{IN} = V_{DD}$		V _{DD} - 0.30	V _{DD} - 0.05		V
Low Output Voltage	Vol	$I_L = -5mA$, $V_{IN} = 0V$			0.05	0.30	V
		$T_A = +25^{\circ}C$		-14	3.5	+14	
Input Offset Voltage	Vos	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		-17		+17	mV
Leed Desudation		IOUT = 0mA to -80mA			+0.2		
Load Regulation	LR	$I_{OUT} = 0mA \text{ to } +80mA$			-0.2		mV/mA
Input Bias Current	IFB	At $V_{IN} = 9.5V$			0.01	1	μA
Voltage Gain	Av	$R_L = 10k\Omega$, $C_L = 50pF$		0.99		1.01	V/V
Power-Supply Rejection Ratio	PSRR	$V_{DD} = 6V$ to 20V, $V_{CM} = V_{CM}$	DUT = 3V	70	95		dB
Common-Mode Input Voltage Range	CMVR	Inferred from CMRR test		0.5		V _{DD} - 0.5	V
Common-Mode Rejection Ratio	CMRR	$0.5V \le V_{CM} \le V_{DD} - 0.5V$		60	80		dB
		V _{OUT} = 9.5V	MAX9650AZK+	20			
Continuous Output Current	IO	(Note 2)	MAX9650AUA+	80			mA
		V _{DD} = 15V, V _{OUT} = 7.5V	MAX9650ATA+		±350		1
Transient Peak Output Current	IPK	(Note 3)			±1.3		А
Bandwidth	BW	-3dB			35		MHz
Slew Rate	SR	4V step, $C_L = 50pF$, $R_L = 1$	$10k\Omega$, $A_V = +1V/V$		40		V/µs
Settling Time	ts	Settling to 0.1% of V _{OUT} , I _L R _S = 2.2 Ω , C _S = 0.1µF (Fig			2.0		μs

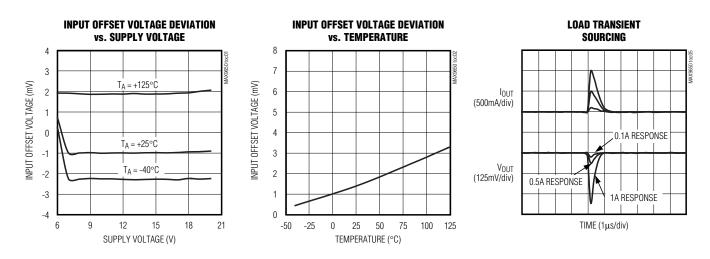
ELECTRICAL CHARACTERISTICS (continued)

(V_{DD} = 19V, V_{GND} = 0V, V_{CM} = V_{OUT} = V_{DD}/2, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TY	P MAX	UNITS
Maximum Load Capacitance	CLOAD	(Note 4)	150)	nF
Noninverting Input Resistance	R _{IN+}	(Note 5)	100)	MΩ
Inverting Input Resistance	R _{IN-}	(Note 5)	100)	MΩ
Input Capacitance	CIN		3		pF
Thermal Shutdown			+17	0	°C
Thermal Shutdown Hysteresis			15		°C

Note 1: All devices are 100% production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.

Note 2: Continuous output current is tested with one output at a time.


Note 3: See the Thermal Shutdown with Temperature Hysteresis section.

Note 4: A series resistor can extend load capacitance range. The settling time can be optimized by a small series resistance. See the *Applications Information* section for more information.

Note 5: Inputs are protected by back-to-back diodes.

Typical Operating Characteristics

 $(V_{DD} = 19V, GND = 0, V_{CM} = V_{OUT} = V_{DD}/2, T_A = +25^{\circ}C$, unless otherwise specified.)

(V_{DD} = 19V, GND = 0, V_{CM} = V_{OUT} = V_{DD}/2, T_A = +25°C, unless otherwise specified.) SUPPLY CURRENT LOAD TRANSIENT LOAD TRANSIENT vs. TEMPERATURE SOURCING SINKING 8 7 lout (500mA/div) 6 ЮЛТ SUPPLY CURRENT (mA) (500mA/div) 5 4 0.1A RESPONSE -1A RESPONSE 3 0.5A RESPONSE VOUT V_{OUT} (125mV/div) 2 (125mV/div) 0.5A RESPONSE 1 1A RESPONSE 0.1A RESPONSE 0 TIME (1µs/div) TIME (1µs/div) -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) **OPEN-LOOP GAIN AND PHASE MAX9650 STEP RESPONSE STARTUP WAVEFORM** WITH VARIOUS CL vs. FREQUENCY MAX9650 toc07 120 360 GAIN $C_L = 100 pF$ IDD V_{OUT} 5V/div 100 300 $C_{I} = 10 pF$ 10mA/div 240 80 180 60 V_{DD} V_{OUT} 5V/div $C_{L} = 2200 pF$ 10V/div 120 GAIN (dB) 40 PHASE (DEG) 20 60 PHASE 0 $C_{I} = 0.01 \mu F$ 0 VIN VOUT -20 -60 5V/div 5V/div -40 -120 VOUT VOUT -180 -60 5V/div $C_{I} = 0.022 \mu I$ 5V/div -80 -240 100ms/div 100E+3 10E+0 1E+3 10E+6 2µs/div 100E+0 1E+6 100E+6 10E+3 FREQUENCY (Hz) **CLOSED-LOOP SMALL-SIGNAL FREQUENCY SMALL-SIGNAL GAIN SMALL-SIGNAL GAIN vs. FREQUENCY RESPONSE FOR VARIOUS CL** vs. FREQUENCY WITH VARIOUS CI 20 3 20 10,000pF $V_{OUT} = 100 \text{mV}_{P-P}$ $V_{OUT} = 100 \text{mV}_{P-P}$ $C_{L} = 0.0022 \mu F$ 2 15 $R_L = 10k\Omega T0 V_{DD}/2$ $R_L = 10k\Omega T0 V_{DD}/2$ 15 1 $C_L = 0.01 \mu F$ 10 1000pl 10 0 VOLTAGE GAIN (dB) 0.001µl 5 $C_L = 0.1 \mu F$ 100p -1 5 GAIN (dB) GAIN (dB) 0 : 560pF -2 -5 0 -3 -10 -4 -5 10pF $C_{I} = 100 pF$ -15 -5 | | | | |||||| -10 -20 $C_L = 56 pF$ -6 ліши -15 -7 -25 0.01 0.1 100 100E+3 1E+6 10E+6 100E+6 100E+3 1E+6 10E+6 100E+6 1 10

FREQUENCY (Hz)

Typical Operating Characteristics (continued)

Maxim Integrated

FREQUENCY (Hz)

FREQUENCY (MHz)

Pin Description

	PIN							
MA	X9650	MAX9651	NAME	FUNCTION				
SOT23	µMAX-EP, TDFN-EP	(µMAX-EP, TDFN-EP)		FUNCTION				
1	6	1	OUTA	VCOM Output A				
2	4	4	GND	Ground				
3	3	3	INA+	Positive Input A				
4	2	2	INA-	Negative Input A				
5	7	8	V _{DD}	Positive-Supply Input. Bypass V_{DD} to GND with a 0.1µF capacitor as close as possible to the device.				
_	_	5	INB+	Positive Input B				
_	_	6	INB-	Negative Input B				
_	_	7	OUTB	VCOM Output B				
—	1, 5, 8	_	N.C.	No Connection. Not internally connected.				
_	_	_	EP	Exposed Pad (μ MAX and TDFN Only). EP is internally connected to GND. Connect EP to GND.				

Detailed Description

The MAX9650/MAX9651 operational rail-to-rail input/output amplifiers hold the VCOM voltage stable while providing the ability to source and sink a high current quickly (1.3A) into a capacitive load such as the backplane of a TFT-LCD panel.

Thermal Shutdown with Temperature Hysteresis

The MAX9650/MAX9651 are capable of high output currents and feature thermal-shutdown protection with temperature hysteresis. When the die temperature reaches +170°C, the device shuts down. When the die cools down by 15°C, the device turns on again. In a TFT-LCD application, the duty cycle is very low. Even with high values of voltage and current, the power dissipation is low and the chip does not shut down.

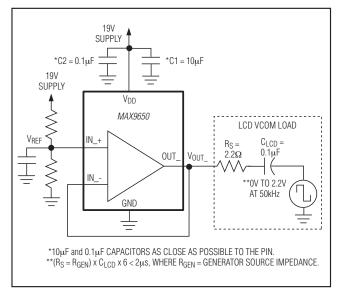


Figure 1. Settling Time Test Circuit

Applications Information

Output Load

The MAX9650/MAX9651 are designed to drive capacitive loads. A small value of series resistance improves the performance of the device to ensure stability and fast settling with very large or very small capacitive loads. In many cases, this resistance is already present due to connection resistance in the wiring and no additional physical resistor is necessary. For minimum series resistance required for stability with capacitive loading, see Figure 2.

Power Supplies and Bypass Capacitors The MAX9650/MAX9651 operate from a 6V to 20V single supply or from $\pm 4.5V$ to $\pm 10V$ dual supplies. Proper supply bypassing ensures stability while driving high

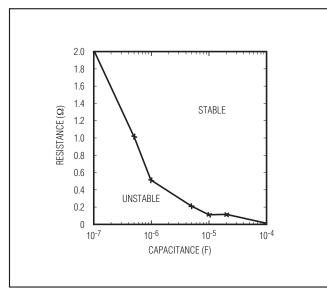
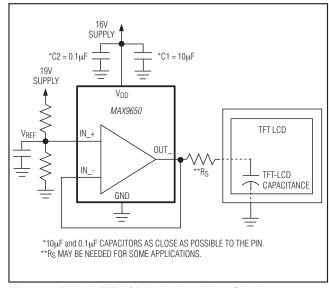


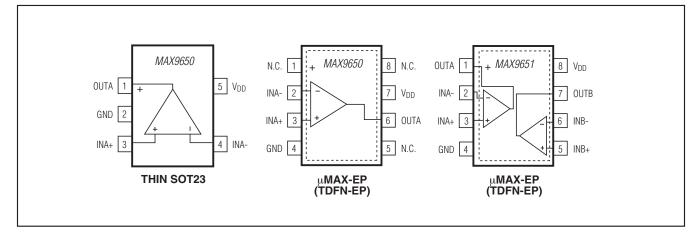
Figure 2. Minimum Combined ESR/Series/Trace Resistance Required for Stability of the MAX9650 in Response to Capacitive Loads

transient loads. The MAX9650/MAX9651 require a minimum 10 μ F (C1) and 0.1 μ F (C2) power-supply bypass capacitors placed as close as possible to the power-supply pin (V_{DD}). See Figure 3. For dual-supply operation, use 10 μ F and 0.1 μ F bypass capacitors on both supplies (V_{DD} and GND) with each capacitor placed as close as possible to V_{DD} and GND.

Layout and Grounding

The exposed pad on the μ MAX® and TDFN packages provide a low thermal resistance for heat dissipation. Solder the exposed pad to a ground plane for best thermal performance. Do not route traces under these packages. For dual-supply operation, the exposed pad (EP) can be electrically connected to the negative supply or it can be left unconnected.

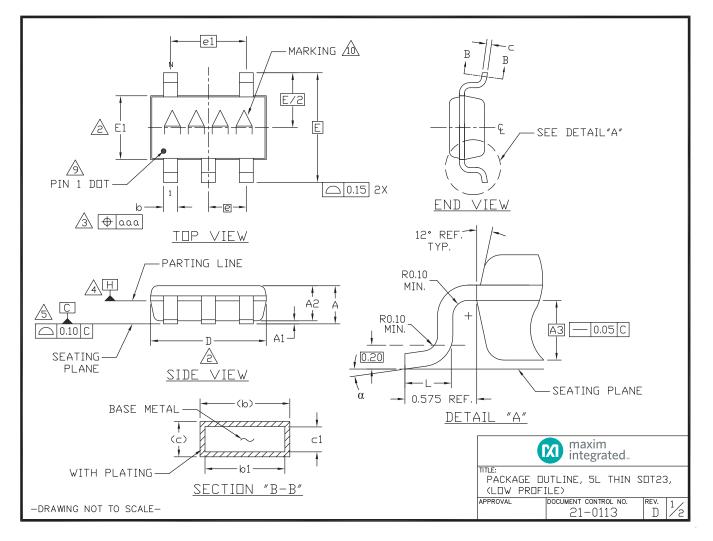



Figure 3. Typical TFT-LCD Backplane Drive Circuit

Chip Information

PROCESS: BICMOS

µMAX is a registered trademark of Maxim Integrated Products, Inc.

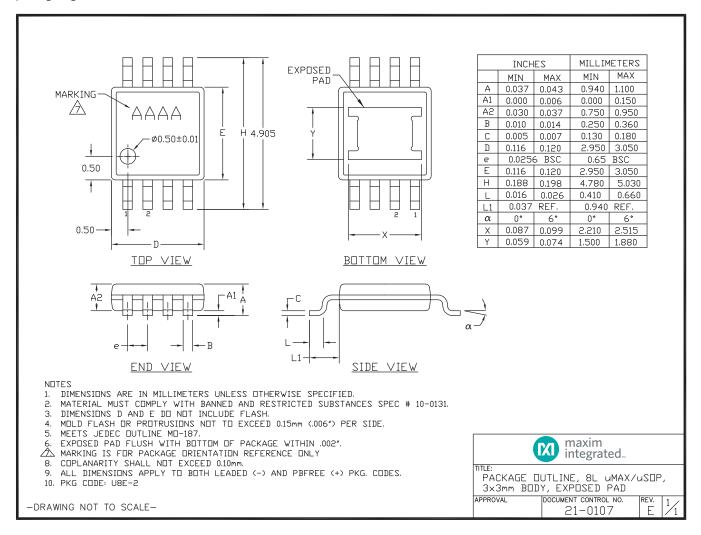

Pin Configurations

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

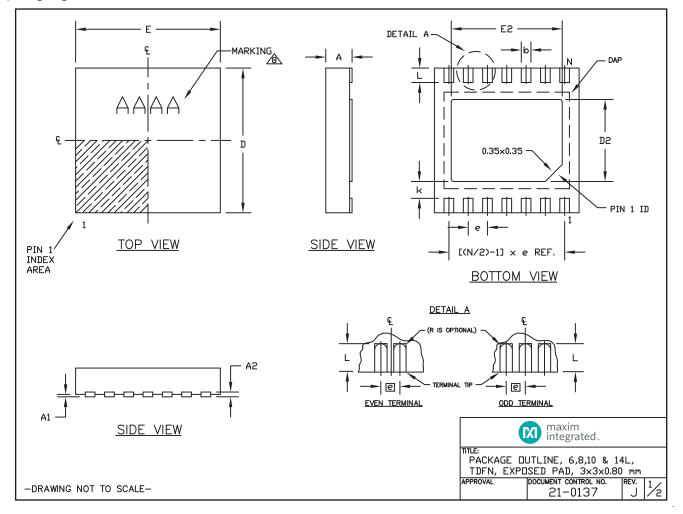
PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SOT23	Z5+2	<u>21-0113</u>	<u>90-0241</u>
8 µMAX	U8E+2	<u>21-0107</u>	<u>90-0145</u>
8 TDFN-EP	T833+2	<u>21-0137</u>	<u>90-0059</u>

Package Information (continued)


For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS OTHERWISE SPECIFIED.		DI	MENSIONS	
2 'D' AND 'E1' ARE REFERENCE DATUM AND DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS, AND ARE MEASURED AT THE BOTTOM PARTING LINE, MOLD FLASH OR		MIN	NDM	MAX
PROTRUSION SHALL NOT EXCEED 0.15mm ON "D" AND 0.25mm ON "E" PER SIDE.	A	-	-	1.10
3 THE LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE	A1	0.00	0.075	0.10
DAMBAR PROTRUSION SHALL BE 0.07mm TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION.	A2	0.85	0.88	0.90
4 datum plane FHF located at mold parting line and coincident with lead.	A3		0.50 BSC	
WHERE LEAD EXITS PLASTIC BODY AT THE BOTTOM OF PARTING LINE.	b	0.30	-	0.45
/5. THE LEAD TIPS MUST LINE WITHIN A SPECIFIED TOLERANCE ZONE. THIS TOLERANCE ZONE IS DEFINED BY TWO PARALLEL LINES. ONE PLANE IS THE	b1	0.25	0.35	0.40
SEATING PLANE, DATUM 🖂 AND THE OTHER PLANE IS AT THE SPECIFIED	C	0.15	-	0.20
DISTANCE FROM 🗁 IN THE DIRECTION INDICATED. FORMED LEADS SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITH 0.10mm AT SEATING PLANE.	C1	0.12	0.127	0.15
6. THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION MD-193 EXCEPT FOR THE 'e'	D	2.80	2.90	3.00
DIMENSION WHICH IS 0.95mm INSTEAD OF 1.00mm. THIS PART IS IN FULL COMPLIANCE TO EIAJ SPECIFICATION SC-74.	E E1		2,75 BSC	
7. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.		1.55	1.60	1.65
COPLANARITY SHALL NOT EXCEED 0.08mm.	e1	0.30	0.40 1.90 BSC	0.50
8. WARPAGE SHALL NOT EXCEED 0.10mm.	e		0.95 BSC	
9. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 PP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE	α	0°	4°	8°
OPTIONAL. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.	۵۵۵		0.20	
10 MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.	PKG CDDE	Z5-	1, Z5-2, Z5	i-3
11 material must comply with banned and restricted substances spec # 10–0131.				
12. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND LEAD FREE (+) PACKAGE CODES.				
			maxim	
	TITLE:		0	
	(LOW	PROFILE)	NE, 5L TH	
-DRAWING NOT TO SCALE-	APPROVAL	DOCU	21-0113	o. rev.

7


Package Information (continued)

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

٦

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

COMMON		ISIONS		PACKAGE V	ARIAT	IONS					
SYMBOL	MIN.	MAX.		PKG. CODE	Ν	D2	E2	е	JEDEC SPEC	b	[(N/2)-1] x e
А	0.70	0.80		T633-2	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF
D	2.90	3.10		T833-2	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF
E	2.90	3.10		T833-3	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF
A1	0.00	0.05		T1033-1	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF
L	0.20	0.40		T1033MK-1	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF
k	0.25	5 MIN.		T1033-2	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF
A2	0.20	REF.		T1433-1	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF
				T1433-2	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF
				T1433-3F	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF
NOTES:											
2. COPL 3. WARP 4. PACK 5. DRAW 6. "N" IS 7. NUME 8. MARK	ANARITY AGE SH AGE LE VING CO S THE SER OF SING IS	' SHALL IALL NO' NGTH/P/ NFORMS TOTAL N LEADS FOR PA	NOT EXC T EXCEEN ACKAGE V TO JED UMBER (SHOWN / CKAGE C	OF LEADS. ARE FOR REF RIENTATION R	m. DNSID XCEP EREN EFER	ERED AS S T DIMENSIO CE ONLY. ENCE ONLY	NS "D2" AN	ID "E2", AN	C(S). ND T1433-1 & T	1433–2.	
1. ALL C 2. COPL 3. WARP 4. PACK 5. DRAW 6. "N" IS 7. NUME 8. MARK	ANARITY AGE SH AGE LE VING CO S THE SER OF SING IS	' SHALL IALL NO' NGTH/P/ NFORMS TOTAL N LEADS FOR PA	NOT EXC T EXCEEN ACKAGE V TO JED UMBER (SHOWN / CKAGE C	CEED 0.08 m D 0.10 mm. WIDTH ARE CO EC MO229, E DF LEADS. ARE FOR REF	m. DNSID XCEP EREN EFER	ERED AS S T DIMENSIO CE ONLY. ENCE ONLY	NS "D2" AN	ID "E2", AN	ND T1433-1 & T m <u>re:</u> PACKAGE	DUTLINE, POSED PA	kim grated. 6,8,10 & 14L, D, 3×3×0.80 mr CONTROL NO. REV. 04107

Г

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	7/08	Initial release	—
1	10/08	Updated slew rate and added TDFN-EP package	1, 2, 6, 10, 11
2	5/09	Updated continuous output current specification	2
3	2/10	Added automotive part to <i>Ordering Information</i> , corrected units for input offset voltage, and added figure for minimum series resistance	1, 2, 5, 6
4	7/10	Removed extraneous information in the Electrical Characteristics table and corrected typo in TOC 5	2, 4
5	11/12	Corrected lead pattern number	8

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2012 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.