

Sample &

Buv

SN74LVC1G34

SCES519M - DECEMBER 2003 - REVISED APRIL 2016

SN74LVC1G34 Single Buffer Gate

1 Features

- Available in the Ultra Small 0.64-mm² Package (DPW) with 0.5-mm Pitch
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Provides Down Translation to V_{CC}
- Max t_{pd} of 3.5 ns at 3.3 V
- Low Power Consumption, 1-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Live Insertion, Partial Power Down Mode, and Back Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- AV Receiver
- Audio Dock: Portable
- Blu-ray Player and Home Theater
- DVD Recorder and Player
- Embedded PC
- MP3 Player/Recorder (Portable Audio)
- Personal Digital Assistant (PDA)
- Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital
- Solid State Drive (SSD): Client and Enterprise
- TV: LCD/Digital and High-Definition (HDTV)
- Tablet: Enterprise
- Video Analytics: Server
- Wireless Headset, Keyboard, and Mouse

4 Simplified Schematic

3 Description

This single buffer gate is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G34 device performs the Boolean function Y = A in positive logic.

The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} Operating range.

The SN74LVC1G34 is available in a variety of packages, including the ultra-small DPW package with a body size of $0.8 \text{ mm} \times 0.8 \text{ mm}$.

Device Information⁽¹⁾

		-
DEVICE NAME	PACKAGE (PINS)	BODY SIZE
SN74LVC1G34YFP	DSBGA (4)	0.76 mm × 0.76 mm
SN74LVC1G34YZP	DSBGA (5)	1.38 mm × 0.88 mm
SN74LVC1G34YZV	DSBGA (4)	0.88 mm × 0.88 mm
SN74LVC1G34DPW	X2SON (5)	0.80 mm × 0.80 mm
SN74LVC1G34DBV	SOT-23 (5)	2.90 mm × 2.80 mm
SN74LVC1G34DCK	SC70 (5)	2.00 mm × 2.10 mm
SN74LVC1G34DRL	SOT (5)	1.60 mm × 1.60 mm
SN74LVC1G34DRY	SON (6)	1.45 mm ×1.00 mm
SN74LVC1G34DSF	SON(6)	1.00 mm × 1.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Table of Contents

9

9.1

9.2 9.3

9.4

10.2

12.1 12.2

14

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Sim	plified Schematic 1
5	Revi	ision History2
6	Pin	Configuration and Functions 4
7	Spe	cifications5
	7.1	Absolute Maximum Ratings 5
	7.2	ESD Ratings5
	7.3	Recommended Operating Conditions 6
	7.4	Thermal Information 6
	7.5	Electrical Characteristics7
	7.6	Switching Characteristics, C _L = 15 pF 8
	7.7	Switching Characteristics, -40°C to 85°C 8
	7.8	Switching Characteristics, -40°C to 125°C 8
	7.9	Operating Characteristics
	7.10	Typical Characteristics 8
8	Para	meter Measurement Information

5 Revision History

Changes from Revision L (April 2014) to Revision M Changed X2SON from 4 pin to 5 pin on *Device Information* table1 Added package temperature specification for DSBGA package6

Changes from Revision K (March 2014) to Revision L

•	Added Device Information table.	. 1
•	Added Pin Functions table.	. 4
•	Updated Handling Ratings table.	. 5
•	Updated operating temperature range.	. 6
•	Added Thermal Information table.	. 6
•	Added Typical Characteristics.	. 8
•	Added Detailed Description section.	11
•	Added Application and Implementation section.	12

Changes from Revision J (December 2013) to Revision K

•	Added Applications.	1
•	DPW Package.	4
•	Moved T _{stg} to Handling Ratings table	5

STRUMENTS

XAS

Detailed Description 11

10 Application and Implementation...... 12 10.1 Application Information..... 12

11 Power Supply Recommendations 13

13 Device and Documentation Support 14 13.2 Trademarks 14 13.3 Electrostatic Discharge Caution 14 13.4 Glossary..... 14

Information 14

Mechanical, Packaging, and Orderable

Overview 11 Functional Block Diagram 11

Feature Description..... 11

Device Functional Modes..... 11

Typical Application 12

Layout Guidelines 13

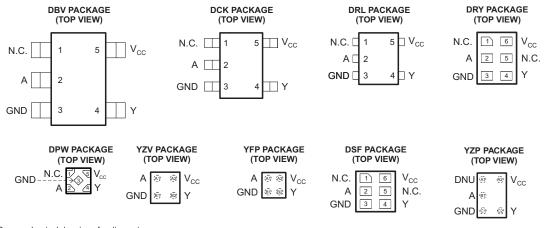
Layout Example 13

Page

Page

Page

Page


SCES519M - DECEMBER 2003 - REVISED APRIL 2016

Changes from Revision	I (June2011) to Revision J
------------------------------	-------------	-----------------

		-
•	Updated document to new TI data sheet format	1
•	Removed Ordering Information table.	1

www.ti.com

6 Pin Configuration and Functions

See mechanical drawings for dimensions. N.C. – No internal connection DNU – Do not use

Pin Functions PIN DESCRIPTION DRL NAME DPW DRY, DSF YZP YFP, YZV DCK, DBV 1, 5 NC 1 A1 Not connected 1 _ А 2 2 2 Β1 A1 Input GND 3 C1 B1 3 3 Ground Υ 4 4 4 C2 B2 Output V_{CC} 5 5 6 A2 A2 Power pin

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range	-0.5	6.5	V	
VI	Input voltage range		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impeda	nce or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the high or low state ⁽²⁾⁽³⁾			V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
T _{stg}	Storage temperature range		-65	150	°C
TJ	Max Junction temperature			150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

7.2 ESD Ratings

			MIN	MAX	UNIT	
V	Electrostatio discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all $pins^{(1)}$		±2	kV	
V(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾		±1	κV	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

SN74LVC1G34

SCES519M-DECEMBER 2003-REVISED APRIL 2016

www.ti.com

7.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
v	Supply voltage	Operating	1.65	5.5	V
VCC	Supply voltage	Data retention only	1.5		V
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	0.65 × V _{CC}		
V _{IH} V _{IL} V _O		V_{CC} = 2.3 V to 2.7 V	1.7		V
VIН	High-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$	2		V
		V_{CC} = 4.5 V to 5.5 V	0.7 × V _{CC}		
V _{IH} Hi V _{IL} Lc V _I In V _O O I _{OH} Hi I _{OL} Lc		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	
		V_{CC} = 2.3 V to 2.7 V		0.7	V
۷IL	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$		0.8	V
			$0.3 \times V_{CC}$		
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
	High-level output current	$V_{CC} = 2.3 V$		-8	
I _{OH}		$V_{CC} = 3 V$		-16	mA
		$v_{CC} = 3 v$		-24	
		$V_{CC} = 4.5 V$		-32	
		V _{CC} = 1.65 V		4	
		$V_{CC} = 2.3 V$		8	
l _{OL}	Low-level output current	N 2 M		16	mA
		$V_{CC} = 3 V$		24	
		$V_{CC} = 4.5 V$		32	
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 V \pm 0.5 V$		10	
T _A	Operating free-air temperature	DSBGA package	-40	85	°C
		All other packages	-40	125	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

7.4 Thermal Information

			SN74LVC1G34						
	THERMAL METRIC ⁽¹⁾	DBV	DCK	DRL	DRY	YZP	DPW	UNIT	
		5 PINS	5 PINS	5 PINS	6 PINS	5 PINS	4 PINS		
R _{θJA}	Junction-to-ambient thermal resistance	229	278	243	439	130	340		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	164	93	78	277	54	215		
R _{θJB}	Junction-to-board thermal resistance	62	65	78	271	51	294	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	44	2	10	84	1	41	°C/w	
Ψјв	Junction-to-board characterization parameter	62	64	77	271	50	294		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	-	-	-	-	-	250		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

www.ti.com

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

			-40°0	-40°C to 85°C -40°C to 125°C		-40°C to 125°C		
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾ MAX	MIN	TYP ⁽¹⁾	MAX	UNIT
	I _{OH} = -100 μA	1.65 V to 5.5 V	$V_{CC} - 0.1$		V _{CC} - 0.1			
	I _{OH} = -4 mA	1.65 V	1.2		1.2			
N/	I _{OH} = -8 mA	2.3 V	1.9		1.9			V
V _{OH}	I _{OH} = -16 mA	2.14	2.4		2.4			v
	I _{OH} = -24 mA	3 V	2.3		2.3			
	I _{OH} = -32 mA	4.5 V	3.8		3.8			
	I _{OL} = 100 μA	1.65 V to 5.5 V		0.1			0.1	
	I _{OL} = 4 mA	1.65 V		0.45			0.45	
N/	I _{OL} = 8 mA	2.3 V		0.3			0.3	V
V _{OL}	I _{OL} = 16 mA	2.14		0.4			0.4	v
	I _{OL} = 24 mA	3 V		0.55			0.55	
	I _{OL} = 32 mA	4.5 V		0.55			0.55	
I _I	$V_{I} = 5.5 V \text{ or GND}$	0 to 5.5 V		±1			±2	μA
I _{off}	$V_{\rm I}$ or $V_{\rm O}$ = 5.5 V	0		±10			±10	μA
I _{CC}	$V_{\rm I} = 5.5 \text{ V or GND}, \qquad I_{\rm O} = 0$	1.65 V to 5.5 V		1			10	μA
ΔI _{CC}	One input at V _{CC} -0.6 V, Other inputs at V _{CC} or GND	3 V to 5.5 V		500			500	μA
Ci	$V_{I} = V_{CC}$ or GND	3.3 V		3.5				pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES519M-DECEMBER 2003-REVISED APRIL 2016

www.ti.com

7.6 Switching Characteristics, $C_L = 15 \text{ pF}$

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3)

						–40°C	to 85°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	2	9.9	1.5	6	1	3.5	1	2.9	ns

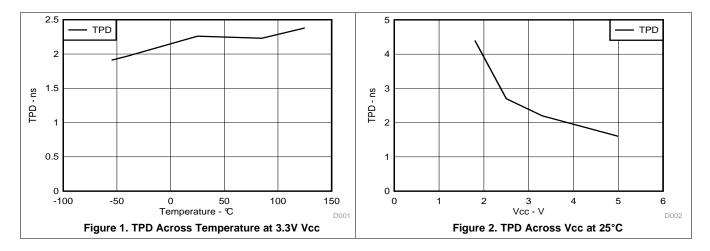
7.7 Switching Characteristics, -40°C to 85°C

over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 4)

			−40°C to 85°C								
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	3.2	8.6	1.5	4.4	1.5	4.1	1	3.2	ns

7.8 Switching Characteristics, -40°C to 125°C

over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 4)


PARAMETER						-40°C	to 125°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	3.2	9.5	1.5	5.1	1.5	4.7	1	3.9	ns

7.9 Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	V _{CC} = 5 V TYP	UNIT
\mathbf{C}_{pd}	Power dissipation capacitance	f = 10 MHz	16	16	16	18	pF

7.10 Typical Characteristics

www.ti.com

V

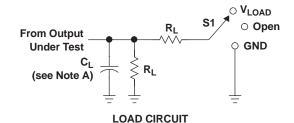
0 V

٧ı

0 V

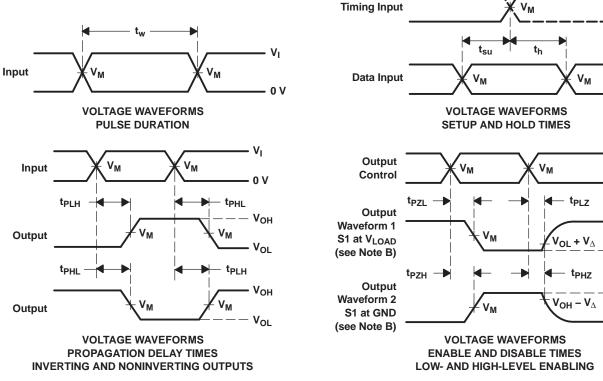
Vı

0 V


V_{LOAD}/2

VoL

VOH


≈0 V

Parameter Measurement Information 8

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

	INI	INPUTS			_	-	
V _{CC}	VI	t _r /t _f	VM	V _{LOAD}	CL	RL	V_{Δ}
$1.8~V\pm0.15~V$	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	15 pF	1 Μ Ω	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	15 pF	1 Μ Ω	0.15 V
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 Μ Ω	0.3 V
5 V \pm 0.5 V	V _{CC}	≤2.5 ns	V _{CC} /2	$2 \times V_{CC}$	15 pF	1 Μ Ω	0.3 V

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

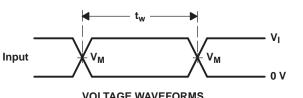
Figure 3. Load Circuit and Voltage Waveforms

RL

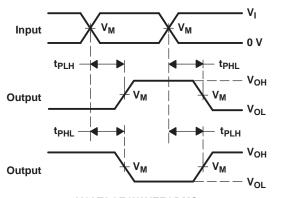
From Output

Under Test

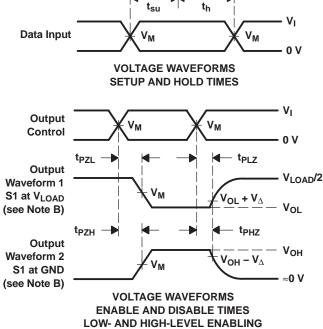
(see Note A)


C

S1 RĻ O Open TEST O GND t_{PLH}/t_{PHL} Open


Parameter Measurement Information (continued)

DAD CIRCUIT							
	IN	PUTS				_	
V _{CC}	VI	t _r /t _f	VM	V _{LOAD}	CL	RL	V_{Δ}
.8 V \pm 0.15 V	Vcc	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
$5 V \pm 0.5 V$	V _{CC}	≤2.5 ns	V _{CC} /2	$2 \times V_{CC}$	50 pF	500 Ω	0.3 V


Timing Input

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS **PROPAGATION DELAY TIMES** INVERTING AND NONINVERTING OUTPUTS

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

STRUMENTS

٧ı

0 V

XAS

S1

VLOAD

GND

VM

t_{PLZ}/t_{PZL}

tPHZ/tPZH

SCES519M – DECEMBER 2003–REVISED APRIL 2016

www.ti.com

9 Detailed Description

9.1 Overview

The SN74LVC1G34 device contains one buffer gate device and performs the Boolean function Y = A. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The DPW package technology is a major breakthrough in IC packaging. Its tiny 0.64 mm square footprint saves significant board space over other package options while still retaining the traditional manufacturing friendly lead pitch of 0.5 mm.

9.2 Functional Block Diagram

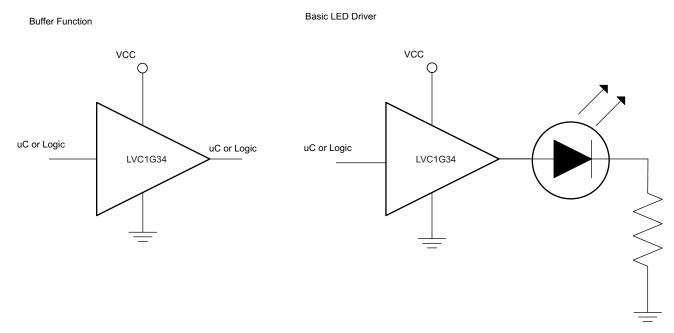
9.3 Feature Description

- Wide operating voltage range.
 - Operates from 1.65 V to 5.5 V.
- Allows down voltage translation.
- Inputs accept voltages to 5.5 V.
- I_{off} feature allows voltages on the inputs and outputs when V_{CC} is 0 V.

9.4 Device Functional Modes

Function Table								
INPUT A	OUTPUT Y							
Н	Н							
L	L							

TEXAS INSTRUMENTS


www.ti.com

10 Application and Implementation

10.1 Application Information

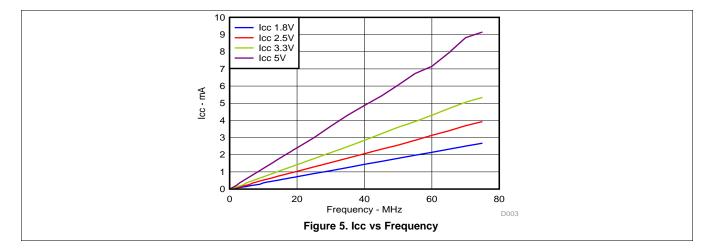
The SN74LVC1G34 is a high drive CMOS device that can be used as a buffer with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V making it ideal for driving multiple outputs and good for high speed applications up to 100 MHz. The inputs are 5.5 V tolerant allowing it to translate down to V_{CC} .

10.2 Typical Application

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure


- 1. Recommended Input Conditions
 - Rise time and fall time specs. See ($\Delta t/\Delta V$) in the *Recommended Operating Conditions* table.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as (VI max) in the *Recommended Operating Conditions* table at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed (I_O max) per output and should not exceed (Continuous current through V_{CC} or GND) total current for the part. These limits are located in the *Absolute Max Ratings* table.
 - Outputs should not be pulled above V_{CC} .

www.ti.com

Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in the *Recommended Operating Conditions* table.

Each Vcc pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply a $0.1-\mu$ F capacitor is recommended and if there are multiple Vcc pins then a $0.01-\mu$ F or $0.022-\mu$ F capacitor is recommended for each power pin. It is ok to parallel multiple bypass caps to reject different frequencies of noise. $0.1-\mu$ F and $1-\mu$ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to Gnd or Vcc whichever make more sense or is more convenient.

12.2 Layout Example

www.ti.com

13 Device and Documentation Support

13.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.2 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

4-May-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LVC1G34DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C345 ~ C34F ~ C34K ~ C34R) (C34H ~ C34P ~ C34S)	Samples
SN74LVC1G34DBVRE4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C345 ~ C34F ~ C34K ~ C34R) (C34H ~ C34P ~ C34S)	Samples
SN74LVC1G34DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C345 ~ C34F ~ C34K ~ C34R) (C34H ~ C34P ~ C34S)	Samples
SN74LVC1G34DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C345 ~ C34K ~ C34R) (C34H ~ C34S)	Samples
SN74LVC1G34DBVTE4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C345 ~ C34K ~ C34R) (C34H ~ C34S)	Samples
SN74LVC1G34DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C345 ~ C34K ~ C34R) (C34H ~ C34S)	Samples
SN74LVC1G34DCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C95 ~ C9F ~ C9K ~ C9R) (C9H ~ C9P ~ C9S)	Samples
SN74LVC1G34DCKRE4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C95 ~ C9F ~ C9K ~ C9R) (C9H ~ C9P ~ C9S)	Samples
SN74LVC1G34DCKRG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C95 ~ C9F ~ C9K ~ C9R) (C9H ~ C9P ~ C9S)	Samples
SN74LVC1G34DCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C95 ~ C9K ~ C9R) (C9H ~ C9S)	Samples
SN74LVC1G34DCKTG4	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C95 ~ C9K ~ C9R) (C9H ~ C9S)	Samples
SN74LVC1G34DPWR	ACTIVE	X2SON	DPW	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	P4	Samples

4-May-2017

Orderable Device	Status	Package Type	Package Drawing		Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
SN74LVC1G34DRLR	(1) ACTIVE	SOT-5X3	DRL	5	4000	(2) Green (RoHS & no Sb/Br)	(6) CU NIPDAU	(3) Level-1-260C-UNLIM	-40 to 125	(4/5) (C97 ~ C9R)	Samples
SN74LVC1G34DRLRG4	ACTIVE	SOT-5X3	DRL	5	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C97 ~ C9R)	Samples
SN74LVC1G34DRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	C9	Samples
SN74LVC1G34DSFR	ACTIVE	SON	DSF	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	C9	Samples
SN74LVC1G34YFPR	ACTIVE	DSBGA	YFP	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	C9 N	Samples
SN74LVC1G34YZPR	ACTIVE	DSBGA	YZP	5	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	C9N	Samples
SN74LVC1G34YZVR	ACTIVE	DSBGA	YZV	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	C9 N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

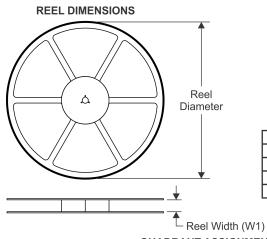
www.ti.com

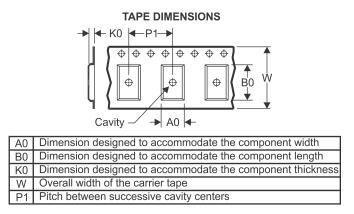
PACKAGE OPTION ADDENDUM

4-May-2017

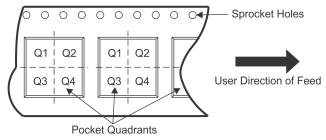
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

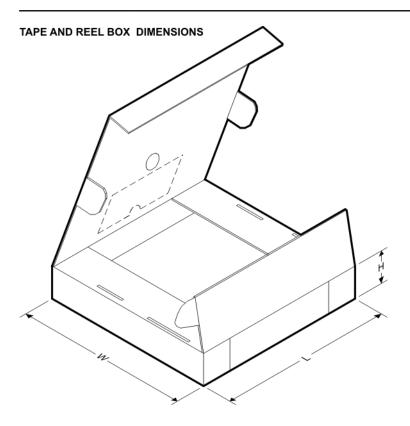

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

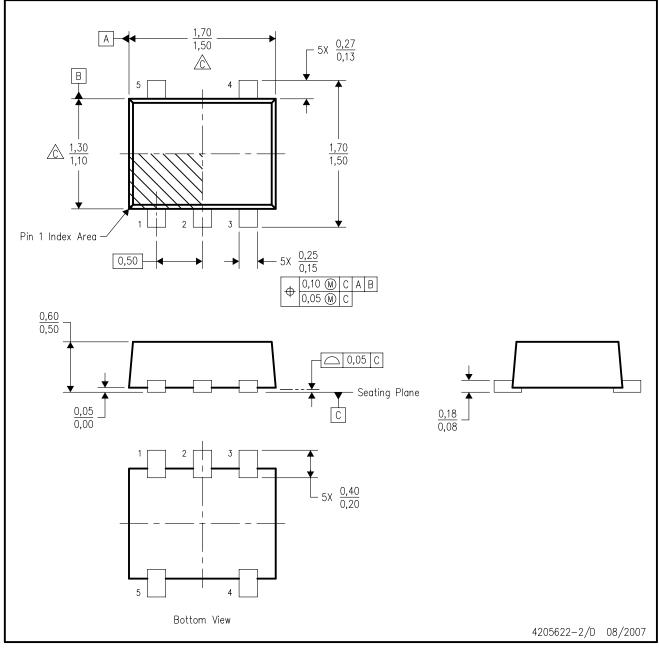
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G34DBVR	SOT-23	DBV	5	3000	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
SN74LVC1G34DBVT	SOT-23	DBV	5	250	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
SN74LVC1G34DCKR	SC70	DCK	5	3000	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74LVC1G34DCKR	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G34DCKT	SC70	DCK	5	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G34DCKT	SC70	DCK	5	250	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74LVC1G34DPWR	X2SON	DPW	5	3000	178.0	8.4	0.91	0.91	0.5	2.0	8.0	Q3
SN74LVC1G34DRLR	SOT-5X3	DRL	5	4000	180.0	9.5	1.78	1.78	0.69	4.0	8.0	Q3
SN74LVC1G34DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74LVC1G34DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC1G34YFPR	DSBGA	YFP	4	3000	178.0	9.2	0.89	0.89	0.58	4.0	8.0	Q1
SN74LVC1G34YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1
SN74LVC1G34YZVR	DSBGA	YZV	4	3000	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


21-Jul-2017

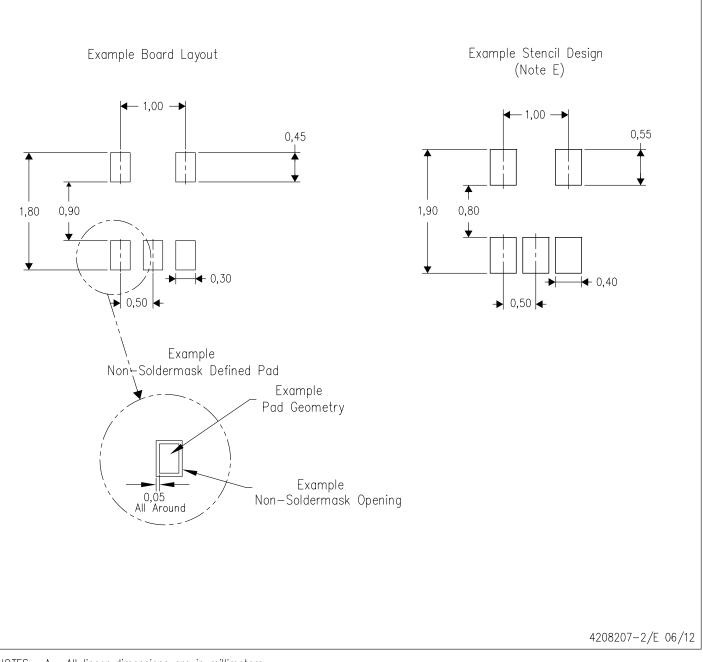
*All dimensions are nominal					•		
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G34DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
SN74LVC1G34DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
SN74LVC1G34DCKR	SC70	DCK	5	3000	205.0	200.0	33.0
SN74LVC1G34DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
SN74LVC1G34DCKT	SC70	DCK	5	250	180.0	180.0	18.0
SN74LVC1G34DCKT	SC70	DCK	5	250	205.0	200.0	33.0
SN74LVC1G34DPWR	X2SON	DPW	5	3000	205.0	200.0	33.0
SN74LVC1G34DRLR	SOT-5X3	DRL	5	4000	184.0	184.0	19.0
SN74LVC1G34DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC1G34DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC1G34YFPR	DSBGA	YFP	4	3000	220.0	220.0	35.0
SN74LVC1G34YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0
SN74LVC1G34YZVR	DSBGA	YZV	4	3000	220.0	220.0	35.0

DRL (R-PDSO-N5)

PLASTIC SMALL OUTLINE

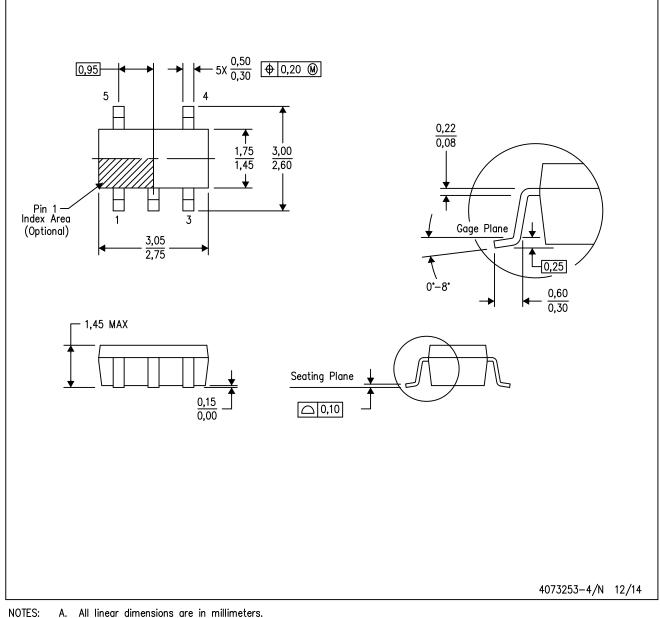
NOTES:

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α. B. This drawing is subject to change without notice.


🖄 Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.

DRL (R-PDSO-N5)

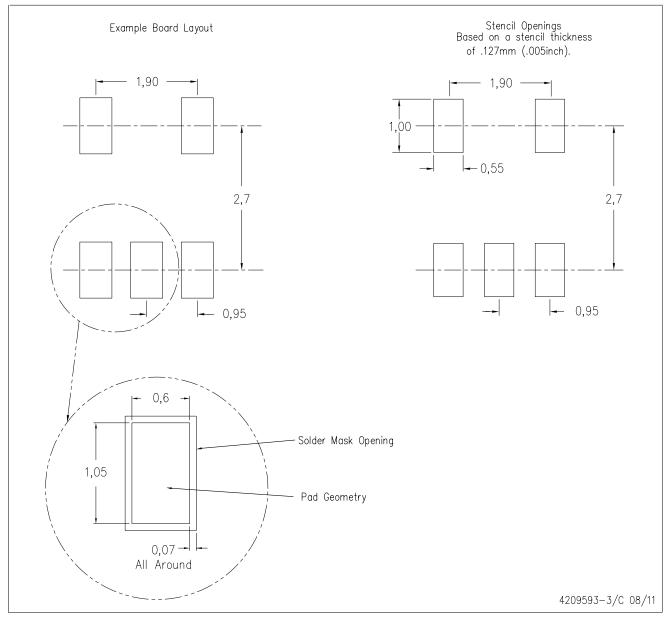
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

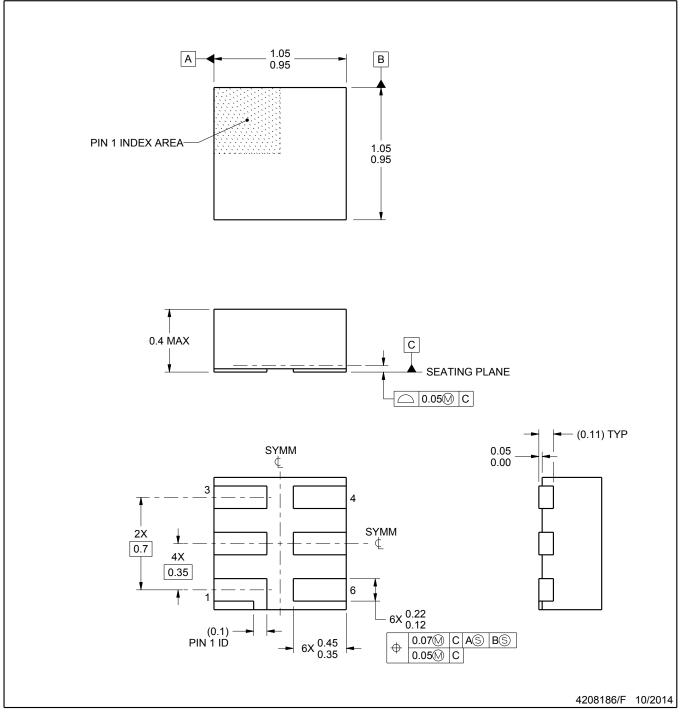


- All linear dimensions are in millimeters. A.
 - This drawing is subject to change without notice. Β.
 - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. C.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

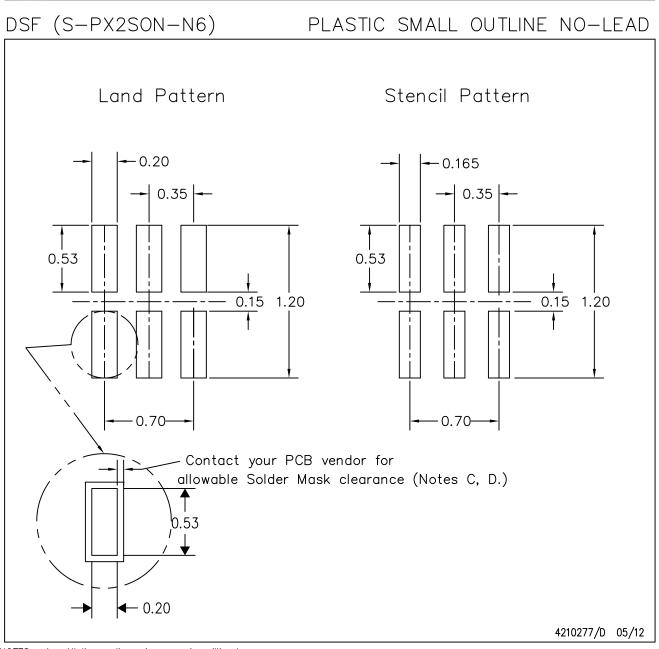
NOTES:


A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

MECHANICAL DATA

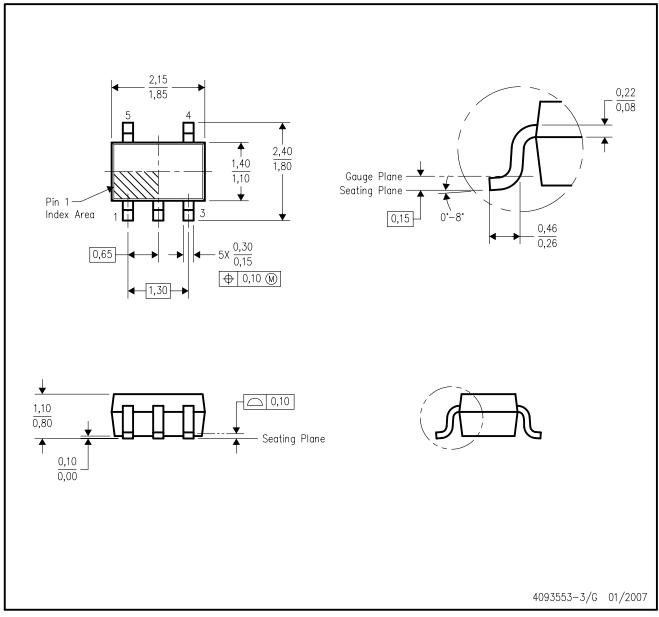
PLASTIC SMALL OUTLINE NO-LEAD



NOTES:

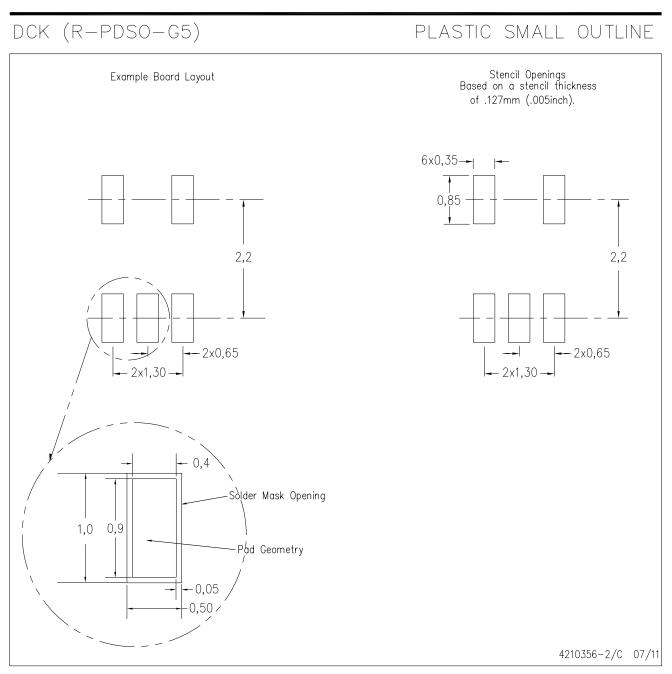
DSF (S-PX2SON-N6)

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.


NOTES: A. All linear dimensions are in millimeters.

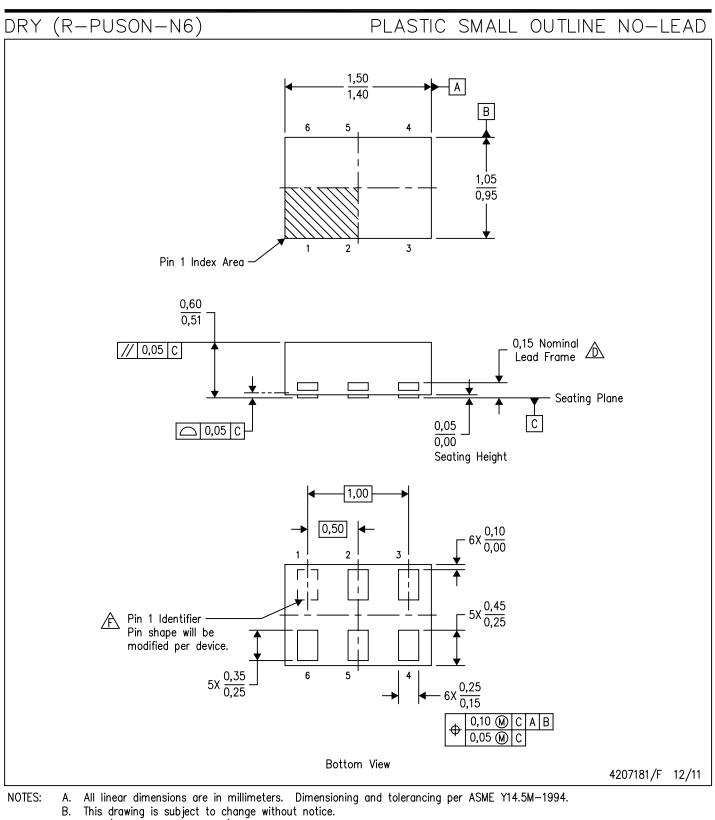
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- H. Component placement force should be minimized to prevent excessive paste block deformation.

DCK (R-PDSO-G5)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AA.

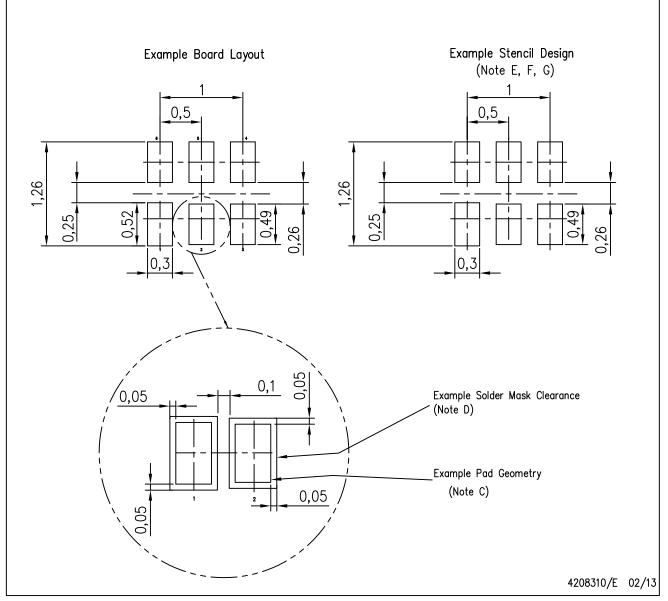
LAND PATTERN DATA



NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

MECHANICAL DATA



- C. SON (Small Outline No-Lead) package configuration.
- Δ The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs.
- E. This package complies to JEDEC MO-287 variation UFAD.
- 🖄 See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape.

DRY (R-PUSON-N6)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

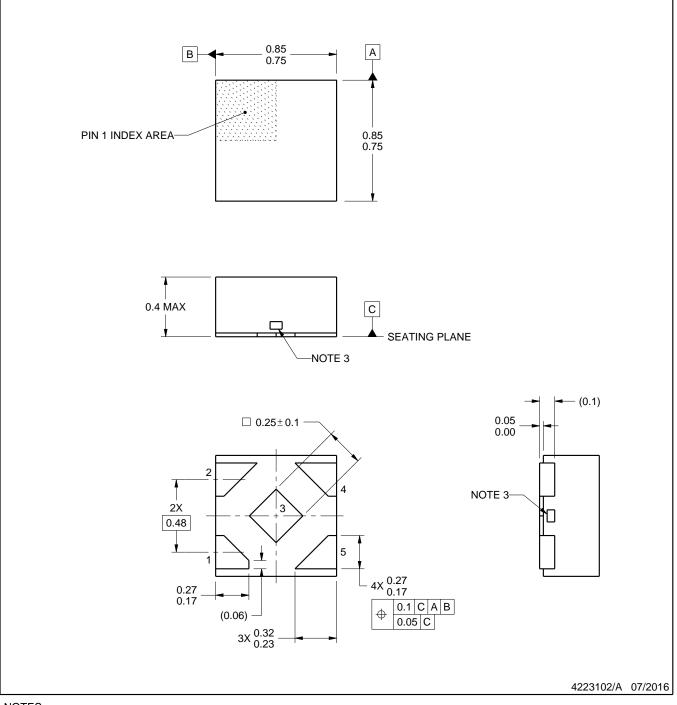
TEXAS INSTRUMENTS www.ti.com

GENERIC PACKAGE VIEW

X2SON - 0.4 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4211218-3/D

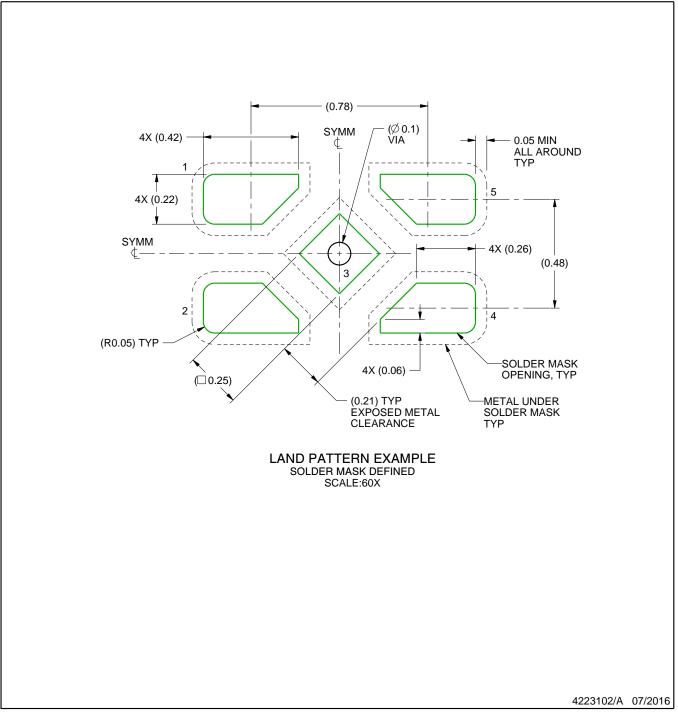

DPW0005A

PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

- NOTES:
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The size and shape of this feature may vary.



DPW0005A

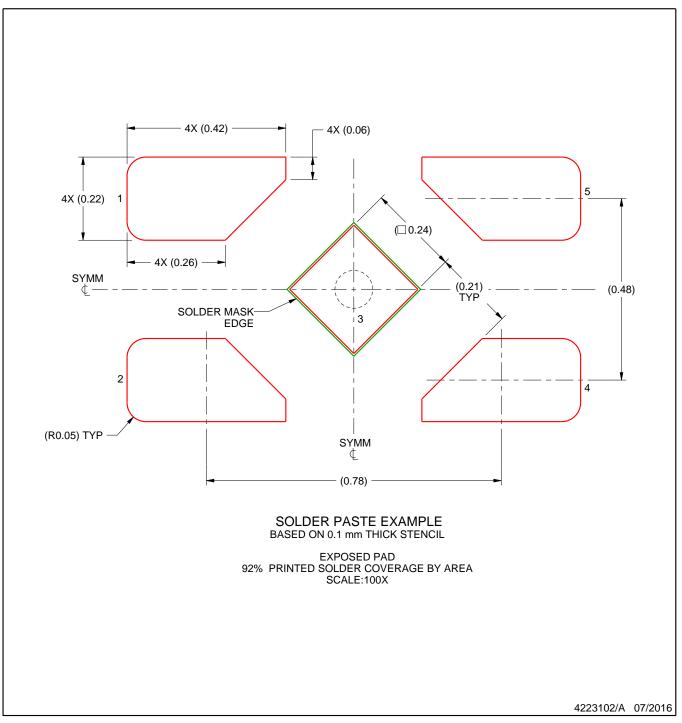
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).



DPW0005A

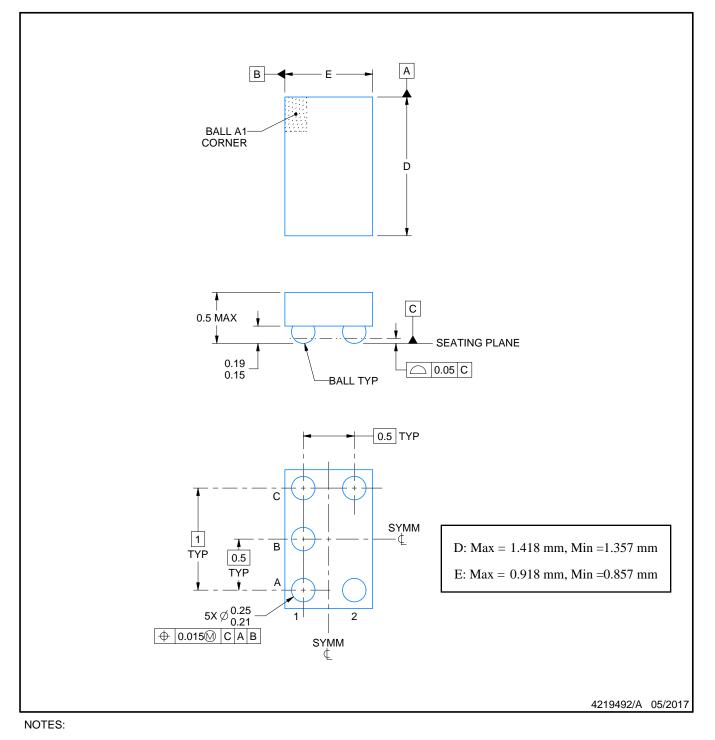
EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

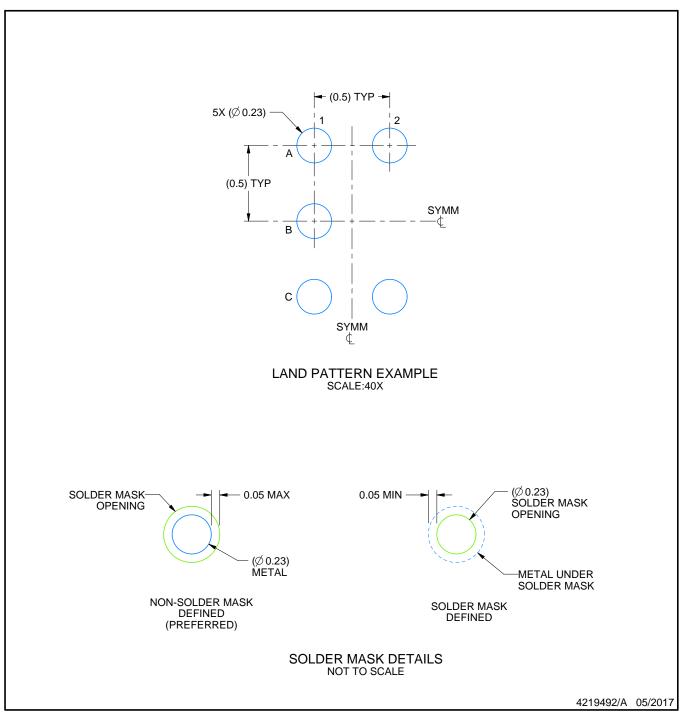

YZP0005

PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



YZP0005

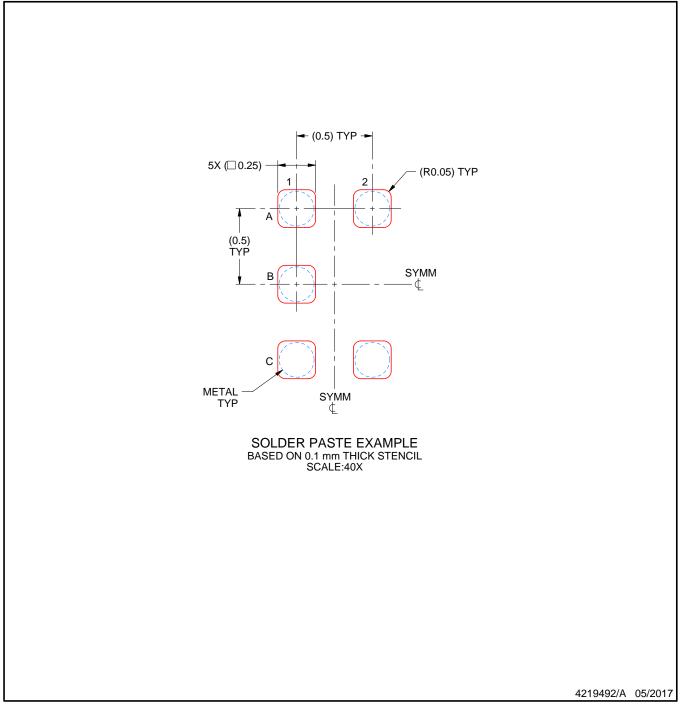
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

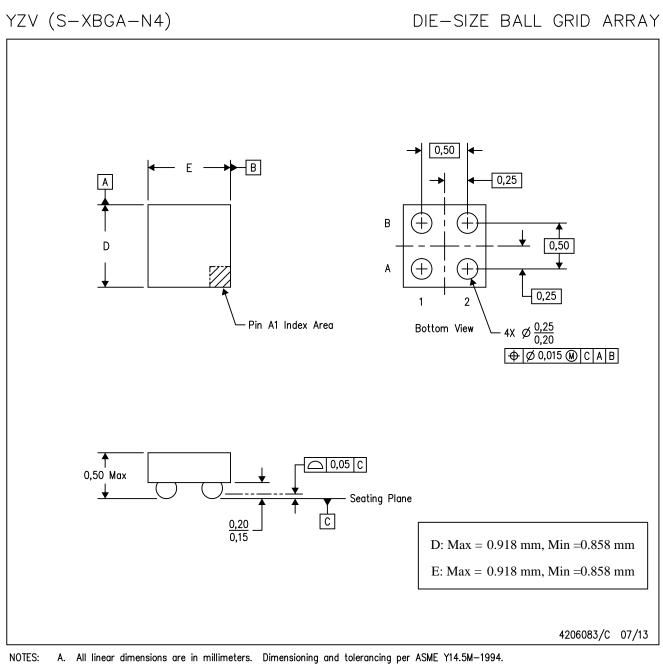
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YZP0005

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

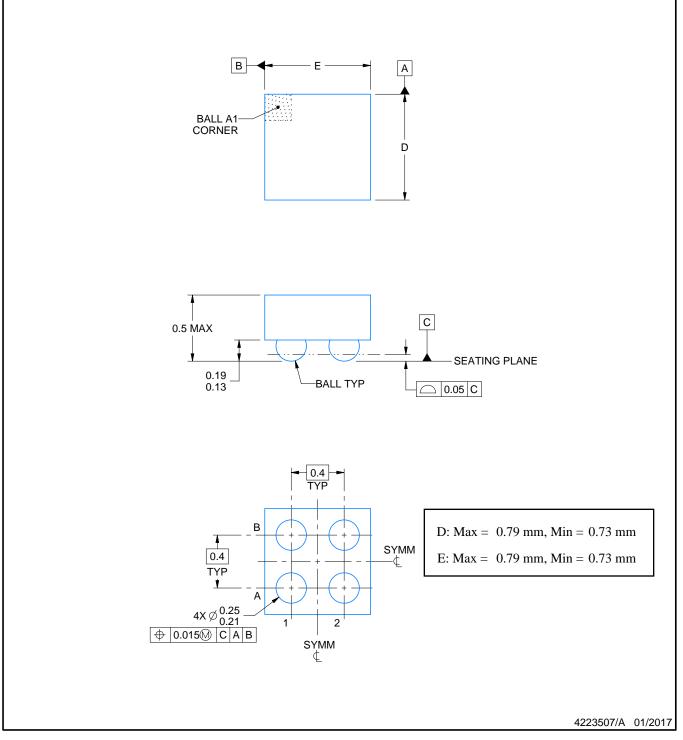

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.


YFP0004

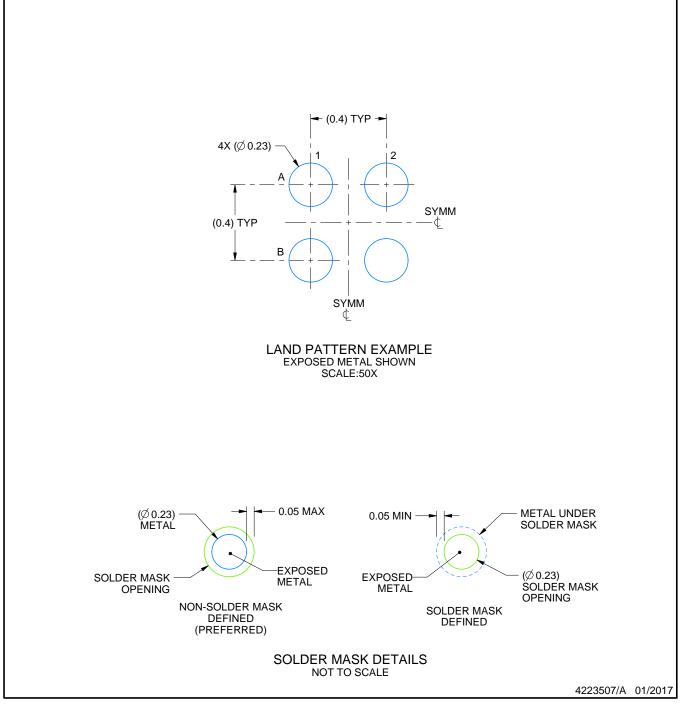
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



YFP0004

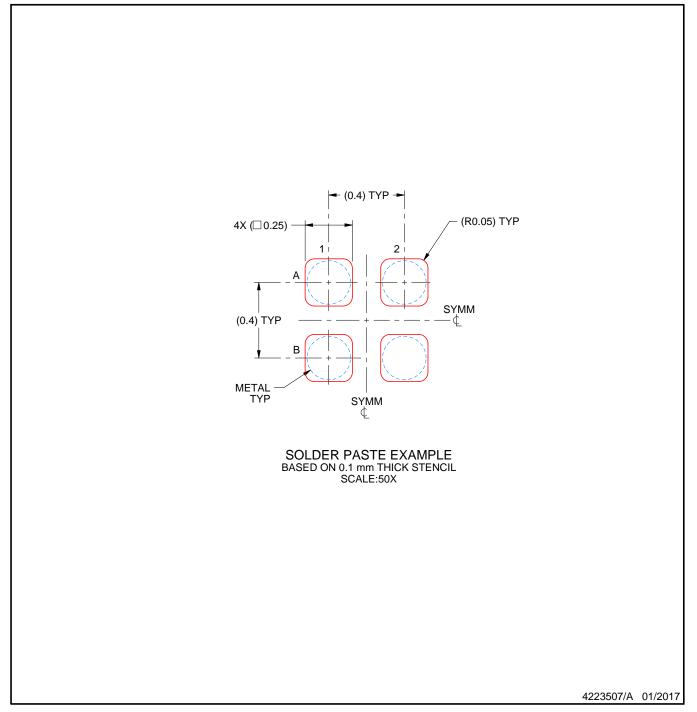
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YFP0004

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated